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Piperacillin-Tazobactam versus Other
Antibacterial Agents for Treatment of
Bloodstream Infections Due to AmpC
�-Lactamase-Producing
Enterobacteriaceae

Lucy Cheng,a Brian C. Nelson,b Monica Mehta,b Nikhil Seval,a Sarah Park,a

Marla J. Giddins,a Qiuhu Shi,c Susan Whittier,d Angela Gomez-Simmonds,a

Anne-Catrin Uhlemanna

Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New
York, USAa; NewYork-Presbyterian Hospital, New York, New York, USAb; New York Medical College, Valhalla,
New York, USAc; Department of Pathology and Cell Biology, Clinical Microbiology Laboratory, Columbia
University Medical Center, New York, New York, USAd

ABSTRACT In vivo induction of AmpC beta-lactamases produces high-level resis-
tance to many beta-lactam antibiotics in Enterobacteriaceae, often resulting in the
need to use carbapenems or cefepime (FEP). The clinical effectiveness of piperacillin-
tazobactam (TZP), a weak inducer of AmpC beta-lactamases, is poorly understood.
Here, we conducted a case-control study of adult inpatients with bloodstream infec-
tions (BSIs) due to Enterobacter, Serratia, or Citrobacter species from 2009 to 2015 to
assess outcomes following treatment with TZP compared to FEP or meropenem
(MEM). We collected clinical data and screened all isolates for the presence of ampC
alleles by PCR. Primary study outcomes were 30-day mortality and persistent bacter-
emia at �72 h from the time of treatment initiation. Of 493 patients with bacter-
emia, 165 patients met the inclusion criteria, of which 88 were treated with TZP and
77 with FEP or MEM. To minimize differences between covariates, we carried out
propensity score matching, which yielded 41 matched pairs. Groups only differed by
age, with patients in the TZP group significantly older (P � 0.012). There were no
significant differences in 30-day mortality, persistent bacteremia, 7-day mortality, or
treatment escalation between the two treatment groups, including in the propensity
score-matched cohort. PCR amplification and sequencing of ampC genes revealed
the presence of ampC in isolates with cefoxitin MICs below 16 �g/ml, in particular in
Serratia spp., and demonstrated that these alleles were highly genetically diverse.
Taken together, TZP may be a valuable treatment option for BSIs due to AmpC beta-
lactamase-producing Enterobacteriaceae, diminishing the need for broader-spectrum
agents. Future studies are needed to validate these findings.

KEYWORDS AmpC beta-lactamases, piperacillin-tazobactam, bacteremia

Gram-negative organisms are particularly adept at acquiring antimicrobial drug
resistance and pose a major challenge to health care (1–4). AmpC beta-lactamases

represent a unique inducible mechanism of Gram-negative resistance (5). They are
chromosomally encoded in certain Enterobacteriaceae, such as Enterobacter spp., Citro-
bacter freundii, and Serratia spp. (1, 5). In these organisms, AmpC production is
controlled by transcription factors that respond variably under the influence of beta-
lactam exposure (1, 5–7). Exposure to beta-lactams can induce high-level AmpC
expression, leading to resistance to some beta-lactams, most notably third-generation
cephalosporins. In addition, mutations in genes that affect AmpC regulation or tran-
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scription can result in constitutive expression of AmpC upon exposure to beta-lactams.
This process, known as derepression, can also result in resistance to beta-lactams, and
it is enhanced by selection of resistant mutants during antibiotic therapy (8). Despite
initial susceptibility, treatment with third-generation cephalosporins can lead to re-
lapsed infection and development of resistance (9).

Historically, carbapenems have been the primary agents used to treat infections
caused by AmpC-producing bacteria. With increasing use of carbapenems and associ-
ated antimicrobial resistance (4), there has been a growing interest in using alternative
agents in recent years. Cefepime is a zwitterion with a net neutral charge that can
rapidly enter bacterial outer membranes and has been shown to be more stable against
AmpC beta-lactamases. Retrospective studies have shown that cefepime has an efficacy
similar to that of carbapenems for treatment of Enterobacter spp. bacteremia (10, 11).
In these analyses, which included propensity score-matched pairwise comparisons,
cefepime use resulted in no difference in duration of bacteremia (11), mortality, or
length of stay compared to meropenem use (10). Based on these results, cefepime has
become an important carbapenem-sparing option for the treatment of these organ-
isms. Other antibiotic agents, such as broad-spectrum beta-lactam/beta-lactamase
inhibitors (BLBLI), have also been suggested as alternative therapies. A survey of
infectious disease practitioners and microbiologists revealed that though there was a
preference to treat Enterobacter spp. bacteremias with carbapenems (58%) and
cefepime (19%), a small minority of prescribers relied on piperacillin-tazobactam (8%)
(12). A recent retrospective study found that the use of BLBLIs in bacteremia caused by
Enterobacter spp. was not significantly associated with microbiological failure (13).
Piperacillin-tazobactam may be an attractive alternative, because both agents are weak
inducers of AmpC enzymes. However, the effectiveness of this combination in the
treatment of infections due to AmpC-producing organisms has not been fully eluci-
dated (14). Thus, the objective of this study was to evaluate outcomes in patients
receiving piperacillin-tazobactam compared to outcomes for patients receiving cefepime
and meropenem for bloodstream infections (BSIs) due to AmpC beta-lactamase-producing
Enterobacteriaceae.

RESULTS
Description of the cohort. Over the 7-year study period, we identified 493 patients

who had BSIs caused by Enterobacter spp., Serratia spp., or Citrobacter spp. Of these, 201
patients met the initial inclusion criteria (Fig. 1). The major reasons for exclusion were
age less than 18 years (n � 135, 41.2%) and polymicrobial BSI (n � 100, 30.5%). After
excluding patients treated with an alternative therapy (monotherapy with aminogly-
cosides, aztreonam, or levofloxacin) or combination therapy (aminoglycosides for
greater than 72 h), 165 patients were included in the final analysis.

Phenotypic and molecular typing of isolates. Ninety-seven percent of patients
had clinical isolates for which cefoxitin MICs were available (Table 1). The majority of
Enterobacter spp. (n � 97/100, 97%) and Serratia spp. (n � 36/44, 82%) showed
cefoxitin-intermediate or -resistant MICs (MICs � 16 �g/ml). Less than half (n � 7/16,
44%) of Citrobacter spp. had elevated MICs to cefoxitin. This was mainly accounted for
by C. koseri, for which only 1 of 10 isolates was cefoxitin resistant. Of note, all
susceptible Serratia spp. isolates had an MIC of 8 �g/ml, which is 1 dilution below the
breakpoint.

A total of 152 isolates collected from the 165 bacteremia episodes were available for
further molecular typing (Table 1). Among these, we detected 54 different alleles (Fig.
2A), including 31 that were detected using novel primer combinations. Of 96 Entero-
bacter spp. isolates tested, 88 (92%) were positive for ampC genes. These isolates were
highly heterogeneous and clustered into 39 alleles. ACT-7 was the most common allele
and was present in 10 (13%) Enterobacter cloacae isolates. When E. cloacae ampC alleles
were grouped based on their phylogenetic relationship, the majority of detected alleles
belonged to group 2 (E. cloacae; 52%), followed in frequency by allelic group Easb (E.
cloacae; 15%) (Fig. 2A). All but three of the ampC-positive E. cloacae isolates and all
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Enterobacter aerogenes, Enterobacter asburiae, and Enterobacter cancerogenus isolates
were intermediately resistant or resistant to cefoxitin (MICs, �16 �g/ml) (Fig. 2B).
However, all 8 ampC-negative Enterobacter isolates (E. cloacae [n � 6], E. aerogenes [n �

1], E. cancerogenus [n � 1]) were also resistant to cefoxitin and had MICs of �64 �g/ml.
All 38 available Serratia marcescens isolates were positive for ampC, including 7

isolates with an MIC of 8 �g/ml, which is considered in the susceptible range. We
identified 12 different S. marcescens ampC alleles, and these all clustered separately
from Enterobacter and Citrobacter ampC genes (Fig. 2A). We were unable to identify
ampC genes in the two Serratia liquefaciens isolates.

Of the seven cefoxitin-resistant Citrobacter spp. isolates, three isolates harbored
three different ampC genes, as shown using previously established primers (Fig. 2A)
(15). All cefoxitin-susceptible isolates were PCR negative.

FIG 1 Enrollment flow chart and inclusion and exclusion criteria.

TABLE 1 Isolate susceptibilities and genotypes

Genus and species n

No. (%) of isolates witha:
No. (%) of isolates
in which ampC
was detectedb

Cefoxitin
MIC > 16 �g/ml

Cefepime
MIC > 16 �g/ml

Meropenem
MIC > 4 �g/ml

TZP
MIC > 128 �g/ml

Enterobacter species 103 97/100 (97) 4/102 (4) 0/103 (0) 15/102 (15) 88/96 (92)
E. aerogenes 15 15/15 (100) 0/15 (0) 0/15 (0) 3/15 (20) 13/14 (93)
E. asburiae 2 2/2 (100) 0/2 (0) 0/2 (0) 0/2 (0) 2/2 (100)
E. cancerogenus 1 1/1 (100) 0/1 (0) 0/1 (0) 1/1 (100) 0/1 (0)
E. cloacae 85 79/82 (96) 4/84 (5) 0/85 (0) 11/84 (13) 73/79 (92)

Serratia species 45 36/44 (82) 0/45 (0) 0/45 (0) 0/29 (0) 38/40 (95)
S. marcescens 43 35/42 (83) 0/43 (0) 0/43 (0) 0/28 (0) 38/38 (100)
S. liquefaciens 2 1/2 (50) 0/2 (0) 0/2 (0) 0/1 (0) 0/2 (0)

Citrobacter species 17 7/16 (44) 0/16 (0) 0/16 (0) 2/14 (14) 3/16 (19)
C. braakii 2 2/2 (100) 0/2 (0) 0/2 (0) 1/2 (50) 0/2 (0)
C. freundii 3 3/3 (100) 0/3 (0) 0/3 (0) 1/1 (100) 2/3 (67)
C. koseri 11 1/10 (10) 0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0)
C. youngae 1 1/1 (100) 0/1 (0) 0/1 (0) 0/1 (0) 1/1 (100)

aPercentages were calculated based on the number of isolates for which MIC data were available (n � 160).
bPercentages were calculated based on the number of isolates available for genotyping (n � 152), including nontypeable isolates (for Enterobacter spp., n � 1;

Serratia spp., n � 3; Citrobacter spp., n � 0).
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Translation of aligned 563-bp internal sequences of ampC alleles demonstrated the
presence of nonsynonymous single nucleotide polymorphisms within and between
allele groups. Among Enterobacter spp. groups, when we used act-7 (group 2) as the
reference sequence, group 2 alleles differed by a median of 2 amino acids (aa;
interquartile range [IQR], 1.5 to 3), whereas groups 1 and 3 differed by a median of 13
and 15 aa (IQRs, 11.5 to 13 and 14.75 to 15.3, respectively) and the Eaer and Easb allele
groups differed by a median of 40 and 25 aa (IQRs, 40 to 40 and 21.3 to 25, respectively).

FIG 2 (A) Allelic variability, based on the distribution of isolate MICs by ampC allele group. (B) AmpC allelic groups,
demonstrating the substantial allelic variability. Species abbreviations correspond to those shown in panel A.
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Serratia alleles differed by a median of only 2 aa (compared to SE-1; IQR, 1 to 2.5),
whereas Citrobacter alleles differed by a median of 21 aa (compared to CIT-1; IQR, 20.5
to 21.5). There were no premature stop codons identified to directly infer functional
differences between alleles.

Patient characteristics. In our study cohort, the median patient age was 65 years
(IQR, 49 to 75 years), and 59% of patients were male (Table 2). At the initial detection
of the BSI, 46% of patients were in an intensive care unit (ICU), and 24% were in septic
shock. Of the 165 patients, 88 were treated with piperacillin-tazobactam, and 77 were
treated with cefepime or meropenem (cefepime [n � 41], meropenem [n � 36]). All
patients received antibiotic therapy within the first 48 h of the first positive blood
culture, except for one patient whose blood culture was initially reported to show
Gram-positive cocci but later the report was corrected to Serratia spp. at 96 h, at which
time piperacillin-tazobactam was started. Concomitant aminoglycosides were admin-
istered for less than 72 h in 32% of patients, including 31 patients (35%) in the
piperacillin-tazobactam group and 22 patients (29%) in the cefepime/meropenem
group. For five patients in the piperacillin-tazobactam group, MICs were unavailable,
partly due to the FDA regulations regarding Vitek reporting for Serratia marcescens
since 2012. Otherwise, all patients were infected with organisms susceptible to their
respective treatment agent, and they received appropriate drug dosing as outlined in
the hospital’s antibiotic guidelines (10).

For most variables, the two groups were comparable at baseline; however, patients
who received cefepime or meropenem were more likely to have had a longer hospital
stay prior to onset of BSI than those who received piperacillin-tazobactam (median, 5
days versus 1 day; P � 0.002), develop septic shock (26 of 77 [34%] versus 14 of 88
[16%]; P � 0.07), require ICU stay (60% versus 34%; P � 0.002), and have a higher Pitt
bacteremia score (PBS; median, 2 versus 1; P � 0.012) (Table 2). The presumed source
of infection and responsible pathogens did not differ between the two treatment

TABLE 2 Baseline patient characteristics

Covariate

No. of patients (%) with the characteristic ina:

Overall cohort comparison (n � 165)
Propensity score-matched cohort comparison
(n � 82)

TZP (n � 88) FEP/MEM (n � 77) P value TZP (n � 41) FEP/MEM (n � 41) P value

Age [median yr (range)] 65 (52, 75) 65 (47, 75) 0.41 68 (59, 78) 57 (40, 69) 0.012
Male sex 50 (57) 48 (62) 0.58 25 (61) 26 (63) 0.84
Neutropenia 3 (3) 7 (9) 0.26 0 3 (7) 0.99
Immunosuppression 18 (21) 25 (33) 0.12 7 (17) 9 (22) 0.34
Charlson comorbidity score [median (range)] 3 (1, 7) 3 (2, 5) 0.65 3 (1, 6) 3 (2, 4) 0.47
Days to bacteremia (median [range]) 1 (1, 9) 5 (1, 15) 0.002 1 (1, 6) 2 (1, 10) 0.11
Renal replacement therapy 14 (16) 14 (18) 0.39 2 (5) 3 (7) 0.65
ICU stay 30 (34) 36 (60) 0.002 17 (41) 15 (37) 0.34
Septic shock 14 (16) 26 (34) 0.07 7 (17) 7 (17) 1
Pitt bacteremia score [median (range)] 1 (0, 3) 2 (0, 6) 0.012 2 (0, 4) 1 (0, 3) 0.4

Presumed source of infection 0.83 0.6
Urinary tract 19 (22) 12 (21) 10 (24) 8 (20)
LRTI/VAP 12 (14) 16 (21) 6 (15) 8 (20)
Surgery related/SSTI 8 (9) 7 (9) 5 (12) 4 (10)
Catheter related 10 (11) 12 (16) 3 (7) 4 (10)
Intra-abdominal 20 (23) 13 (17) 10 (24) 5 (12)
Gut translocation 7 (8) 7 (9) 2 (5) 5 (12)
Multiple 1 (1) 2 (3) 1 (2) 2 (5)
Unknown 11 (13) 8 (10) 4 (10) 5 (12)

Responsible pathogen 0.12 0.54
Enterobacter spp. 51 (58) 52 (68) 23 (56) 23 (56)
Serratia spp. 24 (27) 21 (27) 12 (29) 15 (37)
Citrobacter spp. 13 (15) 4 (5) 6 (15) 3 (7)

aData are the number (percentage) of patients with the indicated characteristic, unless otherwise indicated (i.e., median number and range). Abbreviations: LRTI/VAP,
lower respiratory tract infection/ventilator-associated pneumonia; SSTI, skin/soft tissue infection.
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groups. No significant difference was observed in the distribution of MICs or ampC
allele groups among isolates in the two groups. Propensity score matching yielded 41
matched pairs, of which 24 patients received cefepime and 17 received meropenem.
Most of the differences between the covariates were minimized after matching, except
that patients were older in the piperacillin-tazobactam group (median age, 68 years
[IQR, 59 to 78 years] versus 57 years [IQR, 40 to 69 years]; P � 0.012).

Clinical outcomes. For the primary outcome of mortality, there were 9 deaths (10%)
among patients who received piperacillin-tazobactam, compared to 9 deaths (12%) in
patients who received cefepime or meropenem (P � 0.96) in the overall cohort (Table
3). Additionally, there was no significant difference in 30-day mortality between the two
groups in the matched sample (15% versus 7%; P � 0.33). In the univariate analysis, the
odds ratios (ORs) for mortality in patients receiving piperacillin-tazobactam versus
those receiving cefepime or meropenem were 1.16 (95% confidence interval [CI], 0.44
to 3.09) and 0.5 (95% CI, 0.13 to 2.0) in the overall cohort and the matched sample,
respectively. For a total of 149 patients, follow-up blood cultures were performed, and
14 patients (16%) receiving piperacillin-tazobactam and 10 patients (10%) receiving
cefepime or meropenem had a positive blood culture growing the same species 72 h
after treatment initiation. In the matched cohort, there were more episodes of persis-
tent bacteremia in the piperacillin-tazobactam group (8/41) than the control group
(4/41); however, the difference was not statistically significant (P � 0.26). Half of the
patients with persistent bacteremia in each group died within 30 days, and the overall
mortality rates were low in each group. Likewise, there were no significant differences
in either primary outcome among ampC allele groups (overall P � 0.4 for 30-day
mortality; overall P � 0.2 for persistent bacteremia) (Table 4). However, a higher
proportion of patients infected with group 2 ampC gene-harboring organisms died
within 30 days (n � 7/41, 17%) or had persistent bacteremia (n � 9/41, 22%) compared
to all other ampC allele groups (Table 4).

For the secondary outcomes, 12 (14%) patients receiving piperacillin-tazobactam
and 8 (10%) patients receiving cefepime or meropenem required escalation of the
antibacterial agent(s) dose due to persistent bacteremia within 7 days of active therapy
(P � 0.63). A total of four patients died during that time period (one in the piperacillin-
tazobactam group and three in the cefepime/meropenem group; P � 0.34). There were

TABLE 3 Clinical outcomes, according to treatment category

Outcome

No. (%) of patients with outcome in:

Overall cohort comparison Propensity score-matched cohort comparison

TZP (n � 88)
FEP/MEM
(n � 77) P value OR (95% CI) TZP (n � 41)

FEP/MEM
(n � 41) P value OR (95% CI)

30-Day mortality 9 (10) 9 (12) 0.96 1.16 (0.44, 3.09) 6 (15) 3 (7) 0.33 0.50 (0.13, 2.0)
Persistent bacteremia 14 (16) 10 (13) 0.66 8 (20) 4 (10) 0.26
7-Day mortality 1 (1) 3 (4) 0.34 0 1 (2) 0.99
Treatment escalation 12 (14) 8 (10) 0.63 6 (15) 6 (15) 1

TABLE 4 Clinical outcomes, by ampC allele group

ampC allele group (n)a

No. (%) with outcome in allele group

30-Day
mortality

Persistent
bacteremia

7-Day
mortality

Treatment
escalation

Cit (3) 0 0 0 1 (33)
Group 1 (11) 0 1 (9) 0 2 (18)
Group 2 (41) 7 (17) 9 (22) 1 (2) 7 (17)
Group 3 (9) 1 (11) 1 (11) 1 (11) 0

Easb (12) 2 (17) 0 1 (8) 1 (8)
Eaer (13) 2 (15) 0 1 (8) 3 (23)
Ser (35) 4 (11) 7 (20) 0 5 (14)
aAllele group abbreviations are defined in Fig. 2A.
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no differences in 7-day all-cause mortality or treatment failure in the matched cohort.
Although a higher percentage of patients with group 2 ampC infections died or had
treatment failure within 7 days (n � 14/41, 34%) than in other groups, the overall
difference in outcomes between treatment groups was not statistically significant
(P � 0.4).

None of the 20 patients who were infected with cefoxitin-susceptible isolates (12 in
the piperacillin-tazobactam group and 8 in the cefepime/meropenem group) died
within 30 days of onset of bacteremia. One patient had persistent bacteremia but was
able to achieve clearance on day 6 of piperacillin-tazobactam treatment. One patient in
the piperacillin-tazobactam group for whom a piperacillin-tazobactam MIC was not
available died, but this patient was not included in the matched cohort analysis. None
of the patients in the cohort demonstrated development of resistance to their anti-
bacterial agent(s).

DISCUSSION

In this retrospective, propensity score-matched case-control study, we did not
observe a significant difference in treatment failure or 7-day or 30-day mortality
between Enterobacteriaceae-infected patients treated with piperacillin-tazobactam and
those treated with cefepime or meropenem. These findings support the use of
piperacillin-tazobactam as an additional valuable treatment option for BSIs due to
AmpC beta-lactamase-producing organisms. Our results are based on propensity
matching, resulting in comparable groups, including the distribution of critically ill
patients and those with septic shock (16). The only variable which was not accounted
for by propensity matching was age.

Our findings are consistent with those of other recent studies (16–18). A Spanish
study spanning a 16-year time period (1991 to 2006) analyzed 377 episodes of
Enterobacter spp. bacteremia and found piperacillin-tazobactam-treated patients
had a lower mortality rate than those who received third-generation cephalospo-
rins, carbapenems, ciprofloxacin, or gentamicin (17). However, only 38 patients
received piperacillin-tazobactam in this cohort, and for some the treatments were
changed to other definitive therapies. A 2016 meta-analysis by Harris and colleagues
evaluated 11 studies comparing carbapenems with noncarbapenems as treatment for
bacteremia from AmpC-producing Enterobacteriaceae (primarily Enterobacter spp.) (18).
In an unadjusted analysis, there was no difference in mortality between BLBLIs and
carbapenems. After adjusting for potential confounders such as age and severity of
illness, the nonsignificant trend toward increased mortality in the carbapenem group
was reduced (18). Most recently, a 2016 retrospective cohort study by Moy and
colleagues (19) compared carbapenems to noncarbapenems for the treatment of
bacteremia and urinary tract infections due to SPICE organisms (Serratia, Pseudomonas,
indole-positive Proteus, Citrobacter, and Enterobacter). Piperacillin-tazobactam was the
most common noncarbapenem agent used. The study found no significant differences
in clinical response or microbiological cure. However, the noncarbapenem group
appeared to have a higher severity of illness overall. Additionally, the inclusion of
Pseudomonas spp., which have multiple mechanisms of resistance, makes it difficult to
extrapolate these findings to other organisms that produce AmpC beta-lactamases (12).

Our study has several key differences from the preceding studies. First, we included
only patients with monomicrobial bacteremia, in an attempt to minimize the inclusion
of additive clinical effects of non-AmpC-producing organisms. We also only included
organisms that are known to possess inducible ampC genes. The most common
pathogens in our study were Enterobacter spp. (of which we found 92% harbored an
ampC gene) and S. marcescens (of which 100% harbored an ampC gene). We conducted
propensity matching to minimize differences between patients who received cefepime/
carbapenems and those who did not. We also uniquely confirmed the presence of
ampC genes in bloodstream isolates and carried out molecular typing to identify alleles.

We detected ampC in most cefoxitin-resistant isolates, with several exceptions. First,
a number of ampC-positive, cefoxitin-susceptible isolates, in particular Serratia spp., had
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cefoxitin MICs of 8 �g/ml, 1 dilution below the breakpoint. The clinical significance of
this remains unclear but raises concerns that the presence of ampC may be underrec-
ognized in this organism. The widespread presence of ampC in Serratia spp. isolates
that were linked with preserved susceptibility to cephalosporins was recently described
in a large genomic survey from the United Kingdom (20). Additional mutations, for
example in the ampC regulators AmpD and AmpR (6), may be needed to manifest the
AmpC phenotype in Serratia spp. However, we also noted that the Serratia alleles
showed significant divergence from Enterobacter alleles, raising the possibility that
these are functionally different enzymes. Further studies are needed to more compre-
hensively characterize the mechanisms of ampC induction in clinical isolates. Second,
we did not detect ampC alleles in a number of isolates with high cefoxitin MICs. Despite
our expanded set of primers, this finding likely represented additional allelic variation
of the target gene that was not captured by our approach.

While our study did not reveal an association between specific alleles and cefoxitin
MIC values, differences between Enterobacteriaceae species were apparent. E. cloacae
isolates had the highest proportion of cefoxitin-resistant isolates (defined by an MIC of
16 �g/ml or greater), followed by Serratia spp. and Citrobacter spp. The relatively low
prevalence of cefoxitin resistance in Citrobacter spp. was mainly accounted for by C.
koseri isolates. We also did not detect significant differences in the primary or secondary
outcomes among allele groups, although group sizes were small. However, it is notable
that a relatively high proportion of patients infected with organisms harboring group
2 ampC alleles had a poor outcome.

Limitations to our study need to be considered. Our study represents a single-
center, retrospective study, and the findings might not be generalizable to other
settings. Initially, the cefepime/meropenem group had a higher severity of illness and
longer hospital stays. We attempted to account for these differences by using propen-
sity matching. The resulting groups were small, and thus the study may have lacked
sensitivity to detect differences in treatment outcomes. As such, this could affect
generalizability, but numbers were comparable to those in other studies of treatment
of AmpC-producing infections. The high allelic diversity in our study decreased our
power to detect possible differences in primary or secondary outcomes based on ampC
genotype. While we included isolates with cefoxitin MICs in the susceptible range,
which may have influenced our analyses, these isolates were evenly distributed be-
tween the two groups.

Taken together, our study findings support the use of piperacillin-tazobactam for
the treatment of bloodstream infections with AmpC-producing Enterobacter, Serratia,
and Citrobacter species. Prospective studies and meta-analyses are needed to further
delineate patient populations that might benefit from this treatment approach and to
delineate specific risk factors warranting use of carbapenem or cefepime instead. For
the species studied here, ampC genes may be present even in isolates with lower
cefoxitin MICs. In particular, patients with infections caused by Serratia spp. with MICs
of �8 �g/ml should be closely monitored for treatment failure. However, detection of
these genes was challenging due to extensive allelic variation, which may limit further
assessments of their clinical implications.

MATERIALS AND METHODS
Study design. This retrospective cohort study evaluated all adult patients with a BSI due to

Enterobacter spp., Serratia spp., or Citrobacter spp. who were hospitalized between January 2009 and
December 2015 at a tertiary care medical center comprised of a large academic hospital and a smaller
community hospital. The study was reviewed and approved by the Columbia University Irving Medical
Center New York Institutional Review Board. Patients were eligible for inclusion if they received any in
vitro active antibiotic therapy for at least 72 h within 5 days of the first positive blood culture. Exclusion
criteria consisted of age of �18 years or polymicrobial bacteremia within 7 days of the initial positive
blood culture, with the exception of a single positive culture for coagulase-negative staphylococci.
Patients were also excluded if they received antibiotic agents other than cefepime, meropenem, or
piperacillin-tazobactam for definitive therapy, which was defined as the primary treatment agent used
for 72 h or more. In vitro susceptibility to these agents was demonstrated using current Clinical and
Laboratory Standards Institute (CLSI) interpretative breakpoints (21). Combination therapy with amino-
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glycosides for Gram-negative double coverage during the first 72 h of therapy was allowed and patients
who had received such therapy were included in the study.

The primary outcomes evaluated were 30-day mortality and persistent bacteremia. Time to mortality was
determined starting from the onset of infection, defined as the time of collection of the first positive blood
culture. Persistent bacteremia was defined as positive blood cultures for greater than 72 h after the start of
active therapy as outlined above. Secondary outcomes included 7-day all-cause mortality and treatment
failure. Treatment failure was defined as the need for antibiotic escalation within the first 7 days of active
therapy, as assessed by the treating physician and recorded in the electronic medical record.

Data points collected at the time of admission included patient demographics, the Charlson
comorbidity index (CCI) (22), and presence of immunosuppression (defined as the receipt of chemo-
therapeutic agent[s] within 90 days or receipt of corticosteroids at doses equivalent to �5 mg/day
prednisone or other immunosuppressive agents for at least 14 days in the past 30 days). Additional data
points collected at the time of BSI and over the course of therapy included presumed source of BSI (as
documented by the treating physician), the PBS (23), use of renal replacement therapy, serum creatinine,
stay in the ICU, presence of septic shock (24), and date of discharge or death.

Microbiology and molecular typing. All isolates were identified by the clinical microbiology
laboratory located within the study center. Susceptibility testing was performed via Kirby-Bauer disc
diffusion and the Vitek 2 system (bioMérieux). Numeric isolate MIC values for cefotixin, cefepime,
meropenem, and piperacillin-tazobactam were collected from laboratory records, except where unavail-
able either because susceptibilities were determined using Kirby-Bauer disc-diffusion testing or sup-
pressed or changed to a classification of resistant with the Vitek 2 Advanced Expert system. We did not
perform conventional confirmatory phenotypic testing, as it is not routinely done by the laboratory.
Patients who had isolates with cefoxitin MICs in the susceptible range were included in the analysis.

Molecular typing for ampC genes was carried out with PCR and subsequent sequencing of PCR products.
Each isolate was tested using five sets of previously published primers (7–9). In addition, we designed four
novel primer combinations (see Table S1 in the supplemental material), based on nucleotide alignments of
existing ACT and Serratia ampC sequences in the NCBI database and using Geneious bioinformatics software
(version 8.1.4). We then aligned 563-bp internal sequences of identified ampC alleles and constructed a
phylogenetic tree using the neighbor-joining algorithm to assess relatedness.

Statistics. Patients who received piperacillin-tazobactam were analyzed as cases, and patients who
received cefepime or meropenem served as controls. We performed an unmatched case-control analysis
with all patients meeting criteria for inclusion in the study, and we also used propensity scoring to create
well-matched groups by using 1:1 nearest-neighbor matching without replacement. Covariates included
in the propensity score-matched analysis were the following: duration of hospital stay prior to bacter-
emia, use of immunosuppressive agents, CCI score, PBS, presumed source of infection, responsible
pathogen, ICU stay, and development of septic shock. Cases without a match within 0.25 propensity
score standard deviations were excluded from the analysis. Baseline characteristics of cases and controls
in the overall cohort and propensity score-matched sample were compared to ensure similarity of the
two treatment groups. For the primary and secondary clinical outcomes, univariate analyses were
performed. We used the chi-square test or Fisher’s exact test to compare categorical variables and the
two-sample Wilcoxon rank-sum test for continuous variables for analyzing unmatched patients, as
appropriate. Conditional logistic regression was used to compare variables between cases and controls
in matched patients. For the primary clinical outcome of 30-day mortality, due to small sample size,
number, percentage, univariate Odd’s ratio with 95% confidence intervals, and P value were reported for
both unmatched and matched case-control patients. For the secondary clinical outcomes, number,
percentage, and P values from univariate association tests were reported. All statistical tests were two
tailed, and a P value of less than 0.05 was considered statistically significant. Data were analyzed using
SAS/STAT software (version 9.4; SAS Institute Inc., Cary, NC, USA).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AAC
.00276-17.

TABLE S1, PDF file, 0.1 MB.
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