883 research outputs found
Neurogenetics of emotion processing in major depression
Die vorliegende Arbeit charakterisiert neurogenetische Mechanismen der Depression. In einer 
ersten Studie wurden neurobiologische Korrelate der automatischen Emotionsverarbeitung bei 
Depressiven mittels fMRT untersucht. Es zeigte sich, dass Depressive im Vergleich mit 
Gesunden eine Hyperresponsivität der Amygdala auf negative Reize zeigen, jedoch eine 
Hyporesponsivität auf positive Reize. In einer zweiten Studie konnte gezeigt werden, dass ein 
derartiges Muster mit einer genetischen Variante im Serotonintransportergen (5-HTTLPR) 
assoziiert ist. In einem dritten Experiment wurde eine genetische Variante im Neuropeptid Y 
Gen untersucht. Die depressiven Träger von Risikoallelen, die mit einem schlechten 
Ansprechen auf Pharmakotherapie assoziiert sind, zeigten ebenfalls ein Muster von 
gesteigerter Amygdalaresponsivität auf bedrohliche Gesichter. Dieser Forschungsansatz 
schlägt eine Brücke zwischen kleinen Effekten einzelner genetischer Varianten und 
komplexen psychiatrischen Phänotypen
Influence of Repressive Coping Style on Cortical Activation during Encoding of Angry Faces
Background: Coping plays an important role for emotion regulation in threatening situations. The model of coping modes designates repression and sensitization as two independent coping styles. Repression consists of strategies that shield the individual from arousal. Sensitization indicates increased analysis of the environment in order to reduce uncertainty. According to the discontinuity hypothesis, repressors are sensitive to threat in the early stages of information processing. While repressors do not exhibit memory disturbances early on, they manifest weak memory for these stimuli later. This study investigates the discontinuity hypothesis using functional magnetic resonance imaging (fMRI). Methods: Healthy volunteers (20 repressors and 20 sensitizers) were selected from a sample of 150 students on the basis of the Mainz Coping Inventory. During the fMRI experiment, subjects evaluated and memorized emotional and neutral faces. Subjects performed two sessions of face recognition: immediately after the fMRI session and three days later. Results: Repressors exhibited greater activation of frontal, parietal and temporal areas during encoding of angry faces compared to sensitizers. There were no differences in recognition of facial emotions between groups neither immediately after exposure nor after three days. Conclusions: The fMRI findings suggest that repressors manifest an enhanced neural processing of directly threatening facial expression which confirms the assumption of hyper-responsivity to threatening information in repression in an early processing stage. A discrepancy was observed between high neural activation in encoding-relevant brain areas in response to angry faces in repressors and no advantage in subsequent memory for these faces compared to sensitizers
Progressive grey matter alterations in bipolar disorder across the life span - A systematic review
Objectives: To elucidate the relationship between the course of bipolar disorder (BD) and structural brain changes across the life span, we conducted a systematic review of longitudinal imaging studies in adolescent and adult BD patients.-  Methods: Eleven studies with 329 BD patients and 277 controls met our PICOS criteria (participants, intervention, comparison, outcome and study design): BD diagnosis based on DSM criteria, natural course of disease, comparison of grey matter changes in BD individuals over ≥1-year interval between scans. - Results: The selected studies yielded heterogeneous findings, partly due to varying patient characteristics, data acquisition and statistical models. Mood episodes were associated with greater grey matter loss in frontal brain regions over time. Brain volume decreased or remained stable in adolescent patients, whereas it increased in healthy adolescents. Adult BD patients showed increased cortical thinning and brain structural decline. In particular, disease onset in adolescence was associated with amygdala volume reduction, which was not reported in adult BD. -  Conclusions: The evidence collected suggests that the progression of BD impairs adolescent brain development and accelerates structural brain decline across the lifespan. Age-specific changes in amygdala volume in adolescent BD suggest that reduced amygdala volume is a correlate of early onset BD. Clarifying the role of BD in brain development across the lifespan promises a deeper understanding of the progression of BD patients through different developmental episodes
Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain
Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results: In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.Bernhard T Baune, Carsten Konrad, Dominik Grotegerd, Thomas Suslow, Eva Birosova, Patricia Ohrmann, Jochen Bauer, Volker Arolt, Walter Heindel, Katharina Domschke, Sonja Schöning, Astrid V Rauch, Christina Uhlmann, Harald Kugel and Udo Dannlowsk
Recommended from our members
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries.
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Results from a Large, Multinational Sample Using the Childhood Trauma Questionnaire
Childhood maltreatment has diverse, lifelong impact on morbidity and
mortality. The Childhood Trauma Questionnaire (CTQ) is one of the most
commonly used scales to assess and quantify these experiences and their
impact. Curiously, despite very widespread use of the CTQ, scores on its
Minimization-Denial (MD) subscale—originally designed to assess a positive
response bias—are rarely reported. Hence, little is known about this measure.
If response biases are either common or consequential, current practices of
ignoring the MD scale deserve revision. Therewith, we designed a study to
investigate 3 aspects of minimization, as defined by the CTQ’s MD scale: 1)
its prevalence; 2) its latent structure; and finally 3) whether minimization
moderates the CTQ’s discriminative validity in terms of distinguishing between
psychiatric patients and community volunteers. Archival, item-level CTQ data
from 24 multinational samples were combined for a total of 19,652
participants. Analyses indicated: 1) minimization is common; 2) minimization
functions as a continuous construct; and 3) high MD scores attenuate the
ability of the CTQ to distinguish between psychiatric patients and community
volunteers. Overall, results suggest that a minimizing response bias—as
detected by the MD subscale—has a small but significant moderating effect on
the CTQ’s discriminative validity. Results also may suggest that some prior
analyses of maltreatment rates or the effects of early maltreatment that have
used the CTQ may have underestimated its incidence and impact. We caution
researchers and clinicians about the widespread practice of using the CTQ
without the MD or collecting MD data but failing to assess and control for its
effects on outcomes or dependent variables
Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection
Schizophrenia is a debilitating psychiatric condition often associated with poor quality of life and decreased life expectancy. Lack of progress in improving treatment outcomes has been attributed to limited knowledge of the underlying biology, although large-scale genomic studies have begun to provide such insight. We report the largest single cohort genome-wide association study of schizophrenia (11,260 cases and 24,542 controls) and through meta-analysis with existing data we identify 50 novel GWAS loci. Using gene-wide association statistics we implicate an additional set of 22 novel associations that map onto a single gene. We show for the first time that the common variant association signal is highly enriched among genes that are intolerant to loss of function mutations and that variants in these genes persist in the population despite the low fecundity associated with the disorder through the process of background selection. Associations point to novel areas of biology (e.g. metabotropic GABA-B signalling and acetyl cholinesterase), reinforce those implicated in earlier GWAS studies (e.g. calcium channel function), converge with earlier rare variants studies (e.g. NRXN1, GABAergic signalling), identify novel overlaps with autism (e.g. RBFOX1, FOXP1, FOXG1), and support early controversial candidate gene hypotheses (e.g. ERBB4 implicating neuregulin signalling). We also demonstrate the involvement of six independent central nervous system functional gene sets in schizophrenia pathophysiology. These findings provide novel insights into the biology and genetic architecture of schizophrenia, highlight the importance of mutation intolerant genes and suggest a mechanism by which common risk variants are maintained in the population
- …
