1,477 research outputs found

    Online-Computation Approach to Optimal Control of Noise-Affected Nonlinear Systems with Continuous State and Control Spaces

    No full text
    © 2007 EUCA.A novel online-computation approach to optimal control of nonlinear, noise-affected systems with continuous state and control spaces is presented. In the proposed algorithm, system noise is explicitly incorporated into the control decision. This leads to superior results compared to state-of-the-art nonlinear controllers that neglect this influence. The solution of an optimal nonlinear controller for a corresponding deterministic system is employed to find a meaningful state space restriction. This restriction is obtained by means of approximate state prediction using the noisy system equation. Within this constrained state space, an optimal closed-loop solution for a finite decision-making horizon (prediction horizon) is determined within an adaptively restricted optimization space. Interleaving stochastic dynamic programming and value function approximation yields a solution to the considered optimal control problem. The enhanced performance of the proposed discrete-time controller is illustrated by means of a scalar example system. Nonlinear model predictive control is applied to address approximate treatment of infinite-horizon problems by the finite-horizon controller

    Magnetic fields, winds and X-rays of the massive stars in the Orion Nebula Cluster

    Full text link
    In some massive stars, magnetic fields are thought to confine the outflowing radiatively-driven wind. Although theoretical models and MHD simulations are able to illustrate the dynamics of such a magnetized wind, the impact of this wind-field interaction on the observable properties of a magnetic star - X-ray emission, photometric and spectral variability - is still unclear. The aim of this study is to examine the relationship between magnetism, stellar winds and X-ray emission of OB stars, by providing empirical observations and confronting theory. In conjunction with the COUP survey of the Orion Nebula Cluster, we carried out spectropolarimatric ESPaDOnS observations to determine the magnetic properties of massive OB stars of this cluster.Comment: Proceedings of IAUS272: Active OB star

    Centrifugal Breakout of Magnetically Confined Line-Driven Stellar Winds

    Full text link
    We present 2D MHD simulations of the radiatively driven outflow from a rotating hot star with a dipole magnetic field aligned with the star's rotation axis. We focus primarily on a model with moderately rapid rotation (half the critical value), and also a large magnetic confinement parameter, ηB2R2/M˙V=600\eta_{\ast} \equiv B_{\ast}^2 R_{\ast}^{2} / \dot{M} V_{\infty} = 600. The magnetic field channels and torques the wind outflow into an equatorial, rigidly rotating disk extending from near the Kepler corotation radius outwards. Even with fine-tuning at lower magnetic confinement, none of the MHD models produce a stable Keplerian disk. Instead, material below the Kepler radius falls back on to the stellar surface, while the strong centrifugal force on material beyond the corotation escape radius stretches the magnetic loops outwards, leading to episodic breakout of mass when the field reconnects. The associated dissipation of magnetic energy heats material to temperatures of nearly 10810^{8}K, high enough to emit hard (several keV) X-rays. Such \emph{centrifugal mass ejection} represents a novel mechanism for driving magnetic reconnection, and seems a very promising basis for modeling X-ray flares recently observed in rotating magnetic Bp stars like σ\sigma Ori E.Comment: 5 pages, 3 figures, accepted by ApJ

    The most rapidly rotating He-strong emission line star: HR7355

    Full text link
    Using archival spectroscopic and photometric data, we searched for massive stars with Balmer-emission consistent with magnetically confined circumstellar material. HR 7355 is a formerly unknown He-strong star showing Balmer emission. At V=6.02 mag, it is one of the brightest objects simultaneously showing anomalous helium absorption and hydrogen emission. Among similar objects, only sigma Ori E has so far been subjected to any systematic analysis of the circumstellar material responsible for the emission. We argue that the double-wave photometric period of 0.52d corresponds to the rotation period. In tandem with the high projected equatorial velocity, v sin i=320 km/s, this short period suggests that HR 7355 is the most rapidly rotating He-strong star known to date; a class that was hitherto expected to host stars with slow to moderate rotation only.Comment: 4 pages with 2 figures. Accepted for publication as Research Note by Astronomy and Astrophysic

    Finite-Horizon Optimal State Feedback Control of Nonlinear Stochastic Systems Based on a Minimum Principle

    Get PDF
    In this paper, an approach to the finite-horizon optimal state-feedback control problem of nonlinear, stochastic, discrete-time systems is presented. Starting from the dynamic programming equation, the value function will be approximated by means of Taylor series expansion up to second-order derivatives. Moreover, the problem will be reformulated, such that a minimum principle can be applied to the stochastic problem. Employing this minimum principle, the optimal control problem can be rewritten as a two-point boundary-value problem to be solved at each time step of a shrinking horizon. To avoid numerical problems, the two-point boundary-value problem will be solved by means of a continuation method. Thus, the curse of dimensionality of dynamic programming is avoided, and good candidates for the optimal state-feedback controls are obtained. The proposed approach will be evaluated by means of a scalar example system. © 2006 IEEE

    Similarity Analyzer for Semantic Interoperability of Electronic Health Records Using Artificial Intelligence (AI)

    Get PDF
    The introduction of Electronic Health Records (EHR) has opened possibilities for solving interoperability issues within the healthcare sector. However, even with the introduction of EHRs, healthcare systems like hospitals and pharmacies remain isolated with no sharing of EHRs due to semantic interoperability issues. This paper extends our previous work in which we proposed a framework that dealt with semantic interoperability and security of EHR. The extension is the proposal of a cloud-based similarity analyzer for data structuring, data mapping, data modeling and conflict removal using Word2vec Artificial Intelligence (AI) technique. Different types of conflicts are removed from data in order to model data into common data types which can be interpreted by different stakeholder

    Towards an understanding of the Of?p star HD 191612: optical spectroscopy

    Full text link
    We present extensive optical spectroscopy of the early-type magnetic star HD 191612 (O6.5f?pe-O8fp). The Balmer and HeI lines show strongly variable emission which is highly reproducible on a well-determined 538-d period. Metal lines and HeII absorptions (including many selective emission lines but excluding He II 4686A emission) are essentially constant in line strength, but are variable in velocity, establishing a double-lined binary orbit with P(orb) = 1542d, e=0.45. We conduct a model-atmosphere analysis of the primary, and find that the system is consistent with a O8: giant with a B1: main-sequence secondary. Since the periodic 538-d changes are unrelated to orbital motion, rotational modulation of a magnetically constrained plasma is strongly favoured as the most likely underlying `clock'. An upper limit on the equatorial rotation is consistent with this hypothesis, but is too weak to provide a strong constraint.Comment: Accepted for MNRA

    Model transport studies utilizing lecithin spherules : I. Critical evaluations of several physical models in the determination of the permeability coefficient for glucose

    Full text link
    1. 1. For the purpose of quantifying the transport of drugs across phospholipid membranes in complex aqueous liposome dispersions, solute release experiments were conducted with different initial boundary conditions so that sensitive tests of appropriate physical models could be made.2. 2. Simple physical models which assume monosize or multisize single membrane controlled solute transport failed to provide a reasonable agreement between the experimental data and the theory.3. 3. A systematic evaluation of all the parameters which could introduce uncertainties then revealed that the monosize-multiconcentric models are generally in satisfactory agreement with the experimental transport data. These findings suggest that these models may be used in the reliable determinations of effective bulk permeability coefficients. Calculations using the multisize-multiconcentric models and comparisons between the monosize and multisize-multiconcentric models showed that the assumption in which the particle size distribution is neglected is a good one.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34108/1/0000390.pd
    corecore