We present 2D MHD simulations of the radiatively driven outflow from a
rotating hot star with a dipole magnetic field aligned with the star's rotation
axis. We focus primarily on a model with moderately rapid rotation (half the
critical value), and also a large magnetic confinement parameter, η∗≡B∗2R∗2/M˙V∞=600. The magnetic field
channels and torques the wind outflow into an equatorial, rigidly rotating disk
extending from near the Kepler corotation radius outwards. Even with
fine-tuning at lower magnetic confinement, none of the MHD models produce a
stable Keplerian disk. Instead, material below the Kepler radius falls back on
to the stellar surface, while the strong centrifugal force on material beyond
the corotation escape radius stretches the magnetic loops outwards, leading to
episodic breakout of mass when the field reconnects. The associated dissipation
of magnetic energy heats material to temperatures of nearly 108K, high
enough to emit hard (several keV) X-rays. Such \emph{centrifugal mass ejection}
represents a novel mechanism for driving magnetic reconnection, and seems a
very promising basis for modeling X-ray flares recently observed in rotating
magnetic Bp stars like σ Ori E.Comment: 5 pages, 3 figures, accepted by ApJ