18 research outputs found

    An international collaborative evaluation of central serous chorioretinopathy: different therapeutic approaches and review of literature. The European Vitreoretinal Society central serous chorioretinopathy study

    Get PDF
    Purpose: To study and compare the efficacy of different therapeutic options for the treatment of central serous chorioretinopathy (CSCR). Methods: This is a nonrandomized, international multicentre study on 1719 patients (1861 eyes) diagnosed with CSCR, from 63 centres (24 countries). Reported data included different methods of treatment and both results of diagnostic examinations [fluorescein angiography and/or optical coherent tomography (OCT)] and best-corrected visual acuity (BCVA) before and after therapy. The duration of observation had a mean of 11 months but was extended in a minority of cases up to 7 years. The aim of this study is to evaluate the efficacy of the different therapeutic options of CSCR in terms of both visual (BCVA) and anatomic (OCT) improvement. Results: One thousand seven hundred nineteen patients (1861 eyes) diagnosed with CSCR were included. Treatments performed were nonsteroidal anti-inflammatory eye drops, laser photocoagulation, micropulse diode laser photocoagulation, photodynamic therapy (PDT; Standard PDT, Reduced-dose PDT, Reduced-fluence PDT), intravitreal (IVT) antivascular endothelial growth factor injection (VEGF), observation and other treatments. The list of the OTHERS included both combinations of the main proposed treatments or a variety of other treatments such as eplerenone, spironolactone, acetazolamide, beta-blockers, anti-anxiety drugs, aspirin, folic acid, methotrexate, statins, vitis vinifera extract medication and pars plana vitrectomy. The majority of the patients were men with a prevalence of 77%. The odds ratio (OR) showed a partial or complete resolution of fluid on OCT with any treatment as compared with observation. In univariate analysis, the anatomical result (improvement in subretinal fluid using OCT at 1 month) was favoured by age <60 years (p < 0.005), no previous observation (p < 0.0002), duration less than 3 months (p < 0.0001), absence of CSCR in the fellow eye (p = 0.04), leakage outside of the arcade (p = 0.05) and fluid height >500 \u3bcm (p = 0.03). The OR for obtaining partial or complete resolution showed that anti-VEGF and eyedrops were not statistically significant; whereas PDT (8.5), thermal laser (11.3) and micropulse laser (8.9) lead to better anatomical results with less variability. In univariate analysis, the functional result at 1 month was favoured by first episode (p = 0.04), height of subretinal fluid >500 \u3bcm (p < 0.0001) and short duration of observation (p = 0.02). Finally, there was no statistically significant difference among the treatments at 12 months. Conclusion: Spontaneous resolution has been described in a high percentage of patients. Laser (micropulse and thermal) and PDT seem to lead to significant early anatomical improvement; however, there is little change beyond the first month of treatment. The real visual benefit needs further clarification

    Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Get PDF
    The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM) can effectively be used to model the soil–tool interaction. In his study, Fielke (1994) [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994) [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994) [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994) [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The good correlations give confidence to recommend further investigation of the use of DEM to model the different types of tillage tools

    Industry 4.0 Briefcase: An Innovative Engineering Outreach Project for Professions of the Future

    No full text
    20th International Conference on Computational Science and Its Applications, ICCSA 2020 -- 1 July 2020 through 4 July 2020 -- -- 249529This paper presents an engineering outreach project titled “Industry 4.0 Briefcase” that has been developed to introduce the concept of Industry 4.0 to undergraduate students. The project aims to support participants to become aware of Industry 4.0 related topics such as machine learning, data mining, industrial automation, human-machine interface, and product life cycle, and to stimulate the curiosity of them towards these topics. The scope of the project consists of presentations, experimental applications, observations, individual and collaborative studies, assessment and evaluation practices, e-learning applications, and a social program. The project was conducted as a one- week program at a public university in Turkey with the participation of 18 undergraduate 3rd-year students. Participants consist of students from computer engineering and software engineering departments of the engineering faculties and the business department of the faculty of economics and administrative sciences. Thus, participants of the project had the opportunity to exchange information with students and faculty members from different academic backgrounds. The study utilized the mixed methods approach by performing both quantitative and qualitative measurements. To collect data, mini projects and project evaluation forms were used for quantitative measurements and daily virtual classroom sessions and a general evaluation session (focus group interview) were used for qualitative measurements. The success rates of the participants based on the evaluation of the reports they presented were obtained as 91% in data mining, 95% in industrial automation and human-machine interface, and 89% in machine learning course, respectively. It was observed that the overall satisfaction level of the participants from the project activities was over 95%. These findings were also supported by the qualitative findings as the students indicated their overall satisfaction from the organization of the project and stated that working in teams and attending the social program contributed to developing positive relationships with each other and increasing their success. © 2020, Springer Nature Switzerland AG.218B148 Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKAcknowledgment. This material is partially based upon work supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. 218B148

    Prediction of Single Disc Seeding System Forces, Using a Semi-Analytical and Discrete Element Method (DEM)

    No full text
    There is a rising interest amongst Australian farmers to use disc seeders due to their ability to operate in high residue conditions and at higher speeds, commonly in the range of 12 to 15 km h−1. This paper reports on developing an analytical and discrete element method (DEM) force prediction model suited to a rotating flat disc blade operating at different sweep and tilt angles. To validate the models, field experiments were carried out with a flat disc blade at two tilt angles of 0 and 20° and four sweep angles of 6, 26, 45 and 90° in sandy soil. An analytical approach was developed following an experimental investigation that showed that only the forward portion of the disc blade is actively involved in generating soil failure, while the magnitude of this active portion of the soil-disc interface varied with sweep angle. The predicted active proportions correlated well with the experimental observations. As applying different sweep angles affects the direction of soil movement relative to the disc face, the directions of the friction and resultant forces at different sweep and tilt angles were determined. The equation of soil acceleration force was adapted to account for different sweep angles. Results showed that the predicted force fits relatively well with the measured data at 90, 45 and 26° sweep angle, while the low correlation between predicted and measured force at 6° sweep angle was due to the scrubbing reaction force not accounted for in the model. Results also showed that a better coefficient of determination (R2 = 0.93) was obtained between DEM vs. test results compared to the analytical model predictions (R2 = 0.86), particularly for predicting side forces. It was found from the study that both the developed analytical approach and DEM model enabled the prediction of soil forces at different sweep and tilt angles acting on a flat disc blade, which can assist in optimising disc design to lower the specific resistance

    Prediction of Single Disc Seeding System Forces, Using a Semi-Analytical and Discrete Element Method (DEM) Considering Rotation Effects

    No full text
    Disc seeders are commonly used in no-till farming systems, and their performance evaluation generally rely on expensive and time-consuming field experiments. Mathematical models can help speed up force-related evaluations and improve the understanding of soil-disc interactions, to assist the performance optimisation processes. Previous analytical force prediction models of disc blades have not accounted for the free rotation aspect of the disc blade. This paper develops an analytical force prediction model from the wide blade failure theory adapted to suit rotating flat disc blades operating at different sweep and tilt angles and compares predictions with Discrete Element Method (DEM) simulations. To validate the two models, experiments were performed on a remoulded sandy soil condition using a rotating flat disc set at two tilt angles of 0° and 20°, and four sweep angles of 6, 26, 45 and 90° the 3-dimensional force components of draught, vertical and side forces were measured. Results showed a higher coefficient of determination (R2 = 0.95) was obtained with analytical model predictions compared to DEM predictions (R2 = 0.85) for their agreement with the test results. It was found that both the developed analytical approach and the DEM model can be used to predict tillage forces at different sweep and tilt angles acting on a rotating flat disc blade

    Tick- borne infection revealing human immunodeficiency virus (HIV) positivity in a young adult

    No full text
    To describe a patient whose retinal findings suggestive of tick-borne disease but evaluations led to early diagnosis and treatment of human immunodeficiency virus (HIV) infection
    corecore