100 research outputs found

    A systematic review of the evidence for complementary and alternative medicine in infertility

    Full text link
    BackgroundThe use of complementary and alternative medicine (CAM) by patients and physicians has increased markedly in recent years. Many case reports, case series, and uncontrolled trials of varying quality have been completed; however, there is now a slowly increasing number of randomized controlled trials (RCTs) examining the use of CAM.ObjectivesTo identify, survey, and review RCTs investigating the use of CAM for infertility treatment.Search strategyThe MEDLINE and Cochrane databases were electronically searched.Selection criteriaRCTs examining modalities for treatment or improvement of health status were reviewed.Data collection and analysisRCTs were included based on use of objective measures, articles written in English, availability through the University of Michigan database, and clear published clinical outcomes.Main resultsThirty‐seven articles assessing a variety of CAM modalities met inclusion criteria. Acupuncture, selenium supplementation, weight loss, and psychotherapeutic intervention had 3 or more studies demonstrating beneficial effect. Other interventions had been studied less and evidence for them was limited.ConclusionsAlthough there is preliminary evidence of the effectiveness of some CAM interventions among infertile patients, many of these interventions require further investigation before they can be considered for routine clinical use.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135426/1/ijgo202.pd

    The importance of myo-inositol and D-chiro-inositol to support fertility and reproduction

    Get PDF
    This review details the physiologic roles of two insulin sensitizers, myo-inositol (MI) and D-chiro-inositol (DCI). In the human ovary, MI is a second messenger of follicle stimulating hormone (FSH) and DCI is an aromatase inhibitor. These activities allow a treatment for polycystic ovary syndrome (PCOS) to be defined based on the combined administration of MI and DCI, where the best MI:DCI ratio is 40:1. In addition, MI plays a pivotal role in the physiology of reproduction, and has beneficial effects on the development of oocytes, spermatozoa, and embryos. By contrast, DCI has little effect on spermatozoa, but high concentrations in the ovary can negatively affect the quality of oocytes and the blastocyst. Overall, the evidence in the literature supports the beneficial effects of MI in both female and male reproduction, warranting clinical use of MI in assisted reproductive treatment (ART).Cette revue détaille les rôles physiologiques de deux sensibilisateurs à l'insuline, le myo-inositol (MI) et le D-chiro-inositol (DCI). Dans l'ovaire humain, le MI est un second messager de l'hormone folliculostimulante (FSH) et le DCI est un inhibiteur de l'aromatase. Ces activités permettent de définir un traitement du syndrome des ovaires polykystiques (SOPK) basé sur l'administration combinée de MI et de DCI, où le meilleur rapport MI:DCI est de 40:1. En outre, le MI joue un rôle essentiel dans la physiologie de la reproduction et a des effets bénéfiques sur le développement des ovocytes, des spermatozoïdes et des embryons. En revanche, le DCI a peu d'effet sur les spermatozoïdes, mais des concentrations élevées dans l'ovaire peuvent avoir un effet négatif sur la qualité des ovocytes et du blastocyste. Dans l'ensemble, les données de la littérature confirment les effets bénéfiques du MI dans la reproduction féminine et masculine, ce qui justifie l'utilisation clinique du MI dans l'assistance médicale à la procréation

    Inositols: From established knowledge to novel approaches

    Get PDF
    Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects
    corecore