264 research outputs found

    The control of reproductive physiology and behavior by gonadotropin-inhibitory hormone

    Get PDF
    Gonadotropin-releasing hormone (GnRH) controls the reproductive physiology and behavior of vertebrates by stimulating synthesis and release of gonadotropin from the pituitary gland. In 2000, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), was discovered in quail and found to be an inhibiting factor for gonadotropin release. GnIH homologs are present in the brains of vertebrates, including birds, mammals, amphibians, and fish. These peptides, categorized as RF amide-related peptides (RFRPs), possess a characteristic LPXRF-amide (X = L or Q) motif at their C-termini. GnIH/RFRP precursor mRNA encodes a polypeptide that is possibly cleaved into three mature peptides in birds and two in mammals. The names of these peptides are GnIH, GnIH-related peptide-1 (GnIH-RP-1) and GnIH-RP-2 in birds, and RFRP-1 and RFRP-3 in mammals. GnIH/RFRP is synthesized in neurons of the paraventricular nucleus of the hypothalamus in birds and the dorsomedial hypothalamic area in mammals. GnIH neurons project to the median eminence, thus providing a functional neuroanatomical infrastructure to regulate anterior pituitary function. In quail, GnIH inhibits gonadal activity by decreasing synthesis and release of gonadotropin. The widespread distribution of GnIH/RFRP immunoreactive fibers in all animals tested suggests various actions within the brain. In accordance, GnIH/RFRP receptor mRNA is also expressed widely in the brain and the pituitary. GnIH/RFRP immunoreactive axon terminals are in probable contact with GnRH neurons in birds and mammals, and we recently demonstrated expression of GnIH receptor mRNA in GnRH-I and GnRH-II neurons in European starlings. Thus, GnIH/RFRP may also inhibit gonadotropin synthesis and release by inhibiting GnRH neurons in addition to having direct actions on the pituitary gland. Intracerebroventricular administration of GnIH/RFRP further inhibits reproductive behaviors in songbirds and rodents, possibly via direct actions on the GnRH system. The expression of GnIH/RFRP is regulated by melatonin which is an internal indicator of day length in vertebrates. Stress stimuli also regulate the expression of GnIH/RFRP in songbirds and rodents. Accordingly, GnIH/RFRP may serve as a transducer of environmental information and social interactions into endogenous physiology and behavior of the animal. Recently, it was shown that GnIH/RFRP and its receptor are also expressed in the gonads of birds, rodents and primates. In sum, the existing data suggest that GnIH/RFRP is an important mediator of reproductive function acting at the level of the brain, pituitary, and the gonad in birds and mammals

    Appearance and Stability of Anomalously Fluctuating States in Shor's Factoring Algorithm

    Full text link
    We analyze quantum computers which perform Shor's factoring algorithm, paying attention to asymptotic properties as the number L of qubits is increased. Using numerical simulations and a general theory of the stabilities of many-body quantum states, we show the following: Anomalously fluctuating states (AFSs), which have anomalously large fluctuations of additive operators, appear in various stages of the computation. For large L, they decohere at anomalously great rates by weak noises that simulate noises in real systems. Decoherence of some of the AFSs is fatal to the results of the computation, whereas decoherence of some of the other AFSs does not have strong influence on the results of the computation. When such a crucial AFS decoheres, the probability of getting the correct computational result is reduced approximately proportional to L^2. The reduction thus becomes anomalously large with increasing L, even when the coupling constant to the noise is rather small. Therefore, quantum computations should be improved in such a way that all AFSs appearing in the algorithms do not decohere at such great rates in the existing noises.Comment: 11 figures. A few discussions were added in verion 2. Version 3 is the SAME as version 2; only errors during the Web-upload were fixed. Version 4 is the publised version, in which several typos are fixed and the reference list is update

    Necessity of Superposition of Macroscopically Distinct States for Quantum Computational Speedup

    Full text link
    For quantum computation, we investigate the conjecture that the superposition of macroscopically distinct states is necessary for a large quantum speedup. Although this conjecture was supported for a circuit-based quantum computer performing Shor's factoring algorithm [A. Ukena and A. Shimizu, Phys. Rev. A69 (2004) 022301], it needs to be generalized for it to be applicable to a large class of algorithms and/or other models such as measurement-based quantum computers. To treat such general cases, we first generalize the indices for the superposition of macroscopically distinct states. We then generalize the conjecture, using the generalized indices, in such a way that it is unambiguously applicable to general models if a quantum algorithm achieves exponential speedup. On the basis of this generalized conjecture, we further extend the conjecture to Grover's quantum search algorithm, whose speedup is large but quadratic. It is shown that this extended conjecture is also correct. Since Grover's algorithm is a representative algorithm for unstructured problems, the present result further supports the conjecture.Comment: 18 pages, 5 figures. Fixed typos throughout the manuscript. This version has been publishe

    Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103

    Get PDF
    Orexins are neuropeptides that regulate the sleep-wake cycle and feeding behaviour. QRFP is a newly discovered neuropeptide which exerts similar orexigenic activity, thus playing an important role in energy homeostasis and regulation of appetite. The exact expression and signalling characteristics and physiological actions of QRFP and its receptor GPR103 are poorly understood. Alzheimerâ €™ s disease (AD) patients experience increased nocturnal activity, excessive daytime sleepiness, and weight loss. We hypothesised therefore that orexins and QRFP might be implicated in the pathophysiology of AD. We report that the down-regulation of hippocampal orexin receptors (OXRs) and GPR103 particularly in the cornu ammonis (CA) subfield from AD patients suffering from early onset familial AD (EOFAD) and late onset familial AD (LOAD). Using an in vitro model we demonstrate that this downregulation is due to to Aβ-plaque formation and tau hyper-phosphorylation. Transcriptomics revealed a neuroprotective role for both orexins and QRFP. Finally we provide conclusive evidence using BRET and FRET that OXRs and GPR103 form functional hetero-dimers to exert their effects involving activation of ERK 1/2. Pharmacological intervention directed at the orexigenic system may prove to be an attractive avenue towards the discovery of novel therapeutics for diseases such as AD and improving neuroprotective signalling pathways

    Inhaled ciclesonide versus inhaled budesonide or inhaled beclomethasone or inhaled fluticasone for chronic asthma in adults: a systematic review

    Get PDF
    BACKGROUND: Ciclesonide is a new inhaled corticosteroids licensed for the prophylactic treatment of persistent asthma in adults. Currently beclomethasone dipropionate, budesonide and fluticasone propionate are the most commonly prescribed inhaled corticosteroids for the treatment of asthma but there has been no systematic review comparing the effectiveness and safety ciclesonide to these agents. We therefore aimed to systematically review published randomised controlled trials of the effectiveness and safety of ciclesonide compared to alternative inhaled corticosteroids in people with asthma. METHODS: We performed literature searches on MEDLINE, EMBASE, PUBMED, the COCHRANE LIBRARY and various Internet evidence sources for randomised controlled trials or systematic reviews comparing ciclesonide to beclomethasone or budesonide or fluticasone in adult humans with persistent asthma. Data was extracted by one reviewer. RESULTS: Five studies met the inclusion criteria. Methodological quality was variable. There were no trials comparing ciclesonide to beclomethasone. There was no significant difference between ciclesonide and budesonide or fluticasone on the following outcomes: lung function, symptoms, quality of life, airway responsiveness to a provoking agent or inflammatory markers. However, the trials were very small in size, increasing the possibility of a type II error. One trial demonstrated that the combined deposition of ciclesonide (and its active metabolite) in the oropharynx was 47% of that of budesonide while another trial demonstrated that the combined deposition of ciclesonide (and its active metabolite) in the oropharynx was 53% of that of fluticasone. One trial demonstrated less suppression of cortisol in overnight urine collection after ciclesonide compared to fluticasone (geometric mean fold difference = 1.5, P < 0.05) but no significant difference in plasma cortisol response. CONCLUSION: There is very little evidence comparing CIC to other ICS, restricted to very small, phase II studies of low power. These demonstrate CIC has similar effectiveness and efficacy to FP and BUD (though equivalence is not certain) and findings regarding oral deposition and HPA suppression are inconclusive. There is no direct comparative evidence that CIC causes fewer side effects since none of the studies reported patient-based outcomes

    E. coli Nissle 1917 Affects Salmonella Adhesion to Porcine Intestinal Epithelial Cells

    Get PDF
    BACKGROUND: The probiotic Escherichia coli strain Nissle 1917 (EcN) has been shown to interfere in a human in vitro model with the invasion of several bacterial pathogens into epithelial cells, but the underlying molecular mechanisms are not known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the inhibitory effects of EcN on Salmonella Typhimurium invasion of porcine intestinal epithelial cells, focusing on EcN effects on the various stages of Salmonella infection including intracellular and extracellular Salmonella growth rates, virulence gene regulation, and adhesion. We show that EcN affects the initial Salmonella invasion steps by modulating Salmonella virulence gene regulation and Salmonella SiiE-mediated adhesion, but not extra- and intracellular Salmonella growth. However, the inhibitory activity of EcN against Salmonella invasion always correlated with EcN adhesion capacities. EcN mutants defective in the expression of F1C fimbriae and flagellae were less adherent and less inhibitory toward Salmonella invasion. Another E. coli strain expressing F1C fimbriae was also adherent to IPEC-J2 cells, and was similarly inhibitory against Salmonella invasion like EcN. CONCLUSIONS: We propose that EcN affects Salmonella adhesion through secretory components. This mechanism appears to be common to many E. coli strains, with strong adherence being a prerequisite for an effective reduction of SiiE-mediated Salmonella adhesion

    Novel regulatory therapies for prevention of Graft-versus-host disease

    Get PDF
    Graft-versus-host disease is one of the major transplant-related complications in allogeneic hematopoietic stem cell transplantation. Continued efforts have been made to prevent the occurrence of severe graft-versus-host disease by eliminating or suppressing donor-derived effector T cells. Conventional immunosuppression does not adequately prevent graft-versus-host disease, especially in mismatched transplants. Unfortunately, elimination of donor-derived T cells impairs stem cell engraftment, and delays immunologic reconstitution, rendering the recipient susceptible to post-transplant infections and disease relapse, with potentially lethal consequences. In this review, we discuss the role of dynamic immune regulation in controlling graft-versus-host disease, and how cell-based therapies are being developed using regulatory T cells and other tolerogenic cells for the prevention and treatment of graft-versus-host disease. In addition, advances in the design of cytoreductive conditioning regimens to selectively target graft-versus-host disease-inducing donor-derived T cells that have improved the safety of allogeneic stem cell transplantation are reviewed. Finally, we discuss advances in our understanding of the tolerogenic facilitating cell population, a phenotypically and functionally distinct population of bone marrow-derived cells which promote hematopoietic stem cell engraftment while reducing the risk of graft-versus-host disease
    • …
    corecore