37 research outputs found

    Intracranial tumors of the central nervous system and air pollution - A nationwide case-control study from Denmark

    Get PDF
    Background: Inconclusive evidence has suggested a possible link between air pollution and central nervous system (CNS) tumors. We investigated a range of air pollutants in relation to types of CNS tumors. Methods: We identified all (n = 21,057) intracranial tumors in brain, meninges and cranial nerves diagnosed in Denmark between 1989 and 2014 and matched controls on age, sex and year of birth. We established personal 10- year mean residential outdoor exposure to particulate matter < 2.5 μm (PM2.5), nitrous oxides (NOX), primary emitted black carbon (BC) and ozone. We used conditional logistic regression to calculate odds ratios (OR) linearly (per interquartile range (IQR)) and categorically. We accounted for personal income, employment, marital status, use of medication as well as socio-demographic conditions at area level. Results: Malignant tumors of the intracranial CNS was associated with BC (OR: 1.034, 95%CI: 1.005–1.065 per IQR. For NOx the OR per IQR was 1.026 (95%CI: 0.998–1.056). For malignant non-glioma tumors of the brain we found associations with PM2.5 (OR: 1.267, 95%CI: 1.053–1.524 per IQR), BC (OR: 1.049, 95%CI: 0.996–1.106) and NOx (OR: 1.051, 95% CI: 0.996–1.110). Conclusion: Our results suggest that air pollution is associated with malignant intracranial CNS tumors and malignant non-glioma of the brain. However, additional studies are needed

    Long-term air pollution exposure and Parkinson's disease mortality in a large pooled European cohort: An ELAPSE study

    Get PDF
    BACKGROUND: The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson's Disease (PD) remains limited. OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts. METHODS: Within the project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3), as well as 8 PM2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders. RESULTS: Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM2.5 (hazard ratio per 5 µg/m3: 1.25; 95% confidence interval: 1.01-1.55), NO2 (1.13; 0.95-1.34 per 10 µg/m3), and BC (1.12; 0.94-1.34 per 0.5 × 10-5m-1), and a negative association with O3 (0.74; 0.58-0.94 per 10 µg/m3). Associations of PM2.5, NO2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM2.5 remained robust when adjusted for NO2 (1.24; 0.95-1.62) or BC (1.28; 0.96-1.71), whereas associations with NO2 or BC attenuated to null. O3 associations remained negative, but no longer statistically significant in models with PM2.5. We detected suggestive positive associations with the potassium component of PM2.5. CONCLUSION: Long-term exposure to PM2.5, at levels well below current EU air pollution limit values, may contribute to PD mortality

    Development of Europe-Wide Models for Particle Elemental Composition Using Supervised Linear Regression and Random Forest.

    Get PDF
    We developed Europe-wide models of long-term exposure to eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in particulate matter with diameter <2.5 μm (PM2.5) using standardized measurements for one-year periods between October 2008 and April 2011 in 19 study areas across Europe, with supervised linear regression (SLR) and random forest (RF) algorithms. Potential predictor variables were obtained from satellites, chemical transport models, land-use, traffic, and industrial point source databases to represent different sources. Overall model performance across Europe was moderate to good for all elements with hold-out-validation R-squared ranging from 0.41 to 0.90. RF consistently outperformed SLR. Models explained within-area variation much less than the overall variation, with similar performance for RF and SLR. Maps proved a useful additional model evaluation tool. Models differed substantially between elements regarding major predictor variables, broadly reflecting known sources. Agreement between the two algorithm predictions was generally high at the overall European level and varied substantially at the national level. Applying the two models in epidemiological studies could lead to different associations with health. If both between- and within-area exposure variability are exploited, RF may be preferred. If only within-area variability is used, both methods should be interpreted equally

    Modeling multi-level survival data in multi-center epidemiological cohort studies: Applications from the ELAPSE project.

    Get PDF
    BACKGROUND: We evaluated methods for the analysis of multi-level survival data using a pooled dataset of 14 cohorts participating in the ELAPSE project investigating associations between residential exposure to low levels of air pollution (PM2.5 and NO2) and health (natural-cause mortality and cerebrovascular, coronary and lung cancer incidence). METHODS: We applied five approaches in a multivariable Cox model to account for the first level of clustering corresponding to cohort specification: (1) not accounting for the cohort or using (2) indicator variables, (3) strata, (4) a frailty term in frailty Cox models, (5) a random intercept under a mixed Cox, for cohort identification. We accounted for the second level of clustering due to common characteristics in the residential area by (1) a random intercept per small area or (2) applying variance correction. We assessed the stratified, frailty and mixed Cox approach through simulations under different scenarios for heterogeneity in the underlying hazards and the air pollution effects. RESULTS: Effect estimates were stable under approaches used to adjust for cohort but substantially differed when no adjustment was applied. Further adjustment for the small area grouping increased the effect estimates' standard errors. Simulations confirmed identical results between the stratified and frailty models. In ELAPSE we selected a stratified multivariable Cox model to account for between-cohort heterogeneity without adjustment for small area level, due to the small number of subjects and events in the latter. CONCLUSIONS: Our study supports the need to account for between-cohort heterogeneity in multi-center collaborations using pooled individual level data

    Exposure to surrounding greenness and natural-cause and cause-specific mortality in the ELAPSE pooled cohort

    Get PDF
    Background The majority of studies have shown higher greenness exposure associated with reduced mortality risks, but few controlled for spatially correlated air pollution and traffic noise exposures. We aim to address this research gap in the ELAPSE pooled cohort. Methods Mean Normalized Difference Vegetation Index (NDVI) in a 300-m grid cell and 1-km radius were assigned to participants’ baseline home addresses as a measure of surrounding greenness exposure. We used Cox proportional hazards models to estimate the association of NDVI exposure with natural-cause and cause-specific mortality, adjusting for a number of potential confounders including socioeconomic status and lifestyle factors at individual and area-levels. We further assessed the associations between greenness exposure and mortality after adjusting for fine particulate matter (PM2.5), nitrogen dioxide (NO2) and road traffic noise. Results The pooled study population comprised 327,388 individuals who experienced 47,179 natural-cause deaths during 6,374,370 person-years of follow-up. The mean NDVI in the pooled cohort was 0.33 (SD 0.1) and 0.34 (SD 0.1) in the 300-m grid and 1-km buffer. In the main fully adjusted model, 0.1 unit increment of NDVI inside 300-m grid was associated with 5% lower risk of natural-cause mortality (Hazard Ratio (HR) 0.95 (95% CI: 0.94, 0.96)). The associations attenuated after adjustment for air pollution [HR (95% CI): 0.97 (0.96, 0.98) adjusted for PM2.5; 0.98 (0.96, 0.99) adjusted for NO2]. Additional adjustment for traffic noise hardly affected the associations. Consistent results were observed for NDVI within 1-km buffer. After adjustment for air pollution, NDVI was inversely associated with diabetes, respiratory and lung cancer mortality, yet with wider 95% confidence intervals. No association with cardiovascular mortality was found. Conclusions We found a significant inverse association between surrounding greenness and natural-cause mortality, which remained after adjusting for spatially correlated air pollution and traffic noise

    Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project.

    Get PDF
    BACKGROUND: Long-term exposure to ambient air pollution has been associated with premature mortality, but associations at concentrations lower than current annual limit values are uncertain. We analysed associations between low-level air pollution and mortality within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE). METHODS: In this multicentre longitudinal study, we analysed seven population-based cohorts of adults (age ≥30 years) within ELAPSE, from Belgium, Denmark, England, the Netherlands, Norway, Rome (Italy), and Switzerland (enrolled in 2000-11; follow-up until 2011-17). Mortality registries were used to extract the underlying cause of death for deceased individuals. Annual average concentrations of fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and tropospheric warm-season ozone (O3) from Europe-wide land use regression models at 100 m spatial resolution were assigned to baseline residential addresses. We applied cohort-specific Cox proportional hazard models with adjustment for area-level and individual-level covariates to evaluate associations with non-accidental mortality, as the main outcome, and with cardiovascular, non-malignant respiratory, and lung cancer mortality. Subset analyses of participants living at low pollutant concentrations (as per predefined values) and natural splines were used to investigate the concentration-response function. Cohort-specific effect estimates were pooled in a random-effects meta-analysis. FINDINGS: We analysed 28 153 138 participants contributing 257 859 621 person-years of observation, during which 3 593 741 deaths from non-accidental causes occurred. We found significant positive associations between non-accidental mortality and PM2·5, NO2, and black carbon, with a hazard ratio (HR) of 1·053 (95% CI 1·021-1·085) per 5 μg/m3 increment in PM2·5, 1·044 (1·019-1·069) per 10 μg/m3 NO2, and 1·039 (1·018-1·059) per 0·5 × 10-5/m black carbon. Associations with PM2·5, NO2, and black carbon were slightly weaker for cardiovascular mortality, similar for non-malignant respiratory mortality, and stronger for lung cancer mortality. Warm-season O3 was negatively associated with both non-accidental and cause-specific mortality. Associations were stronger at low concentrations: HRs for non-accidental mortality at concentrations lower than the WHO 2005 air quality guideline values for PM2·5 (10 μg/m3) and NO2 (40 μg/m3) were 1·078 (1·046-1·111) per 5 μg/m3 PM2·5 and 1·049 (1·024-1·075) per 10 μg/m3 NO2. Similarly, the association between black carbon and non-accidental mortality was highest at low concentrations, with a HR of 1·061 (1·032-1·092) for exposure lower than 1·5× 10-5/m, and 1·081 (0·966-1·210) for exposure lower than 1·0× 10-5/m. INTERPRETATION: Long-term exposure to concentrations of PM2·5 and NO2 lower than current annual limit values was associated with non-accidental, cardiovascular, non-malignant respiratory, and lung cancer mortality in seven large European cohorts. Continuing research on the effects of low concentrations of air pollutants is expected to further inform the process of setting air quality standards in Europe and other global regions. FUNDING: Health Effects Institute

    Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis.

    Get PDF
    OBJECTIVE: To investigate the associations between air pollution and mortality, focusing on associations below current European Union, United States, and World Health Organization standards and guidelines. DESIGN: Pooled analysis of eight cohorts. SETTING: Multicentre project Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) in six European countries. PARTICIPANTS: 325 367 adults from the general population recruited mostly in the 1990s or 2000s with detailed lifestyle data. Stratified Cox proportional hazard models were used to analyse the associations between air pollution and mortality. Western Europe-wide land use regression models were used to characterise residential air pollution concentrations of ambient fine particulate matter (PM2.5), nitrogen dioxide, ozone, and black carbon. MAIN OUTCOME MEASURES: Deaths due to natural causes and cause specific mortality. RESULTS: Of 325 367 adults followed-up for an average of 19.5 years, 47 131 deaths were observed. Higher exposure to PM2.5, nitrogen dioxide, and black carbon was associated with significantly increased risk of almost all outcomes. An increase of 5 µg/m3 in PM2.5 was associated with 13% (95% confidence interval 10.6% to 15.5%) increase in natural deaths; the corresponding figure for a 10 µg/m3 increase in nitrogen dioxide was 8.6% (7% to 10.2%). Associations with PM2.5, nitrogen dioxide, and black carbon remained significant at low concentrations. For participants with exposures below the US standard of 12 µg/m3 an increase of 5 µg/m3 in PM2.5 was associated with 29.6% (14% to 47.4%) increase in natural deaths. CONCLUSIONS: Our study contributes to the evidence that outdoor air pollution is associated with mortality even at low pollution levels below the current European and North American standards and WHO guideline values. These findings are therefore an important contribution to the debate about revision of air quality limits, guidelines, and standards, and future assessments by the Global Burden of Disease

    Long-term exposure to air pollution and liver cancer incidence in six European cohorts.

    Get PDF
    Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter <2.5 μm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 μg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 μg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards

    Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: a pooled analysis of six European cohorts within the ELAPSE project.

    Get PDF
    BACKGROUND: Long-term exposure to outdoor air pollution increases the risk of cardiovascular disease, but evidence is unclear on the health effects of exposure to pollutant concentrations lower than current EU and US standards and WHO guideline limits. Within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), we investigated the associations of long-term exposures to fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and warm-season ozone (O3) with the incidence of stroke and acute coronary heart disease. METHODS: We did a pooled analysis of individual data from six population-based cohort studies within ELAPSE, from Sweden, Denmark, the Netherlands, and Germany (recruited 1992-2004), and harmonised individual and area-level variables between cohorts. Participants (all adults) were followed up until migration from the study area, death, or incident stroke or coronary heart disease, or end of follow-up (2011-15). Mean 2010 air pollution concentrations from centrally developed European-wide land use regression models were assigned to participants' baseline residential addresses. We used Cox proportional hazards models with increasing levels of covariate adjustment to investigate the association of air pollution exposure with incidence of stroke and coronary heart disease. We assessed the shape of the concentration-response function and did subset analyses of participants living at pollutant concentrations lower than predefined values. FINDINGS: From the pooled ELAPSE cohorts, data on 137 148 participants were analysed in our fully adjusted model. During a median follow-up of 17·2 years (IQR 13·8-19·5), we observed 6950 incident events of stroke and 10 071 incident events of coronary heart disease. Incidence of stroke was associated with PM2·5 (hazard ratio 1·10 [95% CI 1·01-1·21] per 5 μg/m3 increase), NO2 (1·08 [1·04-1·12] per 10 μg/m3 increase), and black carbon (1·06 [1·02-1·10] per 0·5 10-5/m increase), whereas coronary heart disease incidence was only associated with NO2 (1·04 [1·01-1·07]). Warm-season O3 was not associated with an increase in either outcome. Concentration-response curves indicated no evidence of a threshold below which air pollutant concentrations are not harmful for cardiovascular health. Effect estimates for PM2·5 and NO2 remained elevated even when restricting analyses to participants exposed to pollutant concentrations lower than the EU limit values of 25 μg/m3 for PM2·5 and 40 μg/m3 for NO2. INTERPRETATION: Long-term air pollution exposure was associated with incidence of stroke and coronary heart disease, even at pollutant concentrations lower than current limit values. FUNDING: Health Effects Institute
    corecore