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Abstract

Particulate matter air pollution and diesel engine exhaust have been classified as car-

cinogenic for lung cancer, yet few studies have explored associations with liver can-

cer. We used six European adult cohorts which were recruited between 1985 and

2005, pooled within the “Effects of low-level air pollution: A study in Europe”
(ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015.

The annual average exposure to nitrogen dioxide (NO2), particulate matter with diam-

eter <2.5 μm (PM2.5), black carbon (BC), warm-season ozone (O3), and eight elemental

components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potas-

sium) were estimated by European-wide hybrid land-use regression models at partici-

pants' residential addresses. We analyzed the association between air pollution and

liver cancer incidence by Cox proportional hazards models adjusting for potential

confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer

during a mean follow-up of 18.1 years. We observed positive linear associations

between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 μg/m3),

PM2.5 (1.12, 0.92-1.36 per 5 μg/m3), and BC (1.15, 1.00-1.33 per 0.5 10�5/m) and

liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant

models with PM2.5. Most components of PM2.5 were associated with the risk of liver

2 SO ET AL.

mailto:rina.so@sund.ku.dk
mailto:rinani616@gmail.com
mailto:rinani616@gmail.com


cancer, with the strongest associations for sulfur and vanadium, which were robust to

adjustment for PM2.5 or NO2. Our study suggests that ambient air pollution may

increase the risk of liver cancer, even at concentrations below current EU standards.

K E YWORD S

air pollution, cohort study, liver cancer incidence, particulate matter

What's new?

Air pollution contains a number of known carcinogens. While air pollution is classified as carci-

nogenic and is a known risk factor for lung cancer, the evidence for cancers in other organs is

limited. In this large European study, the authors detected associations between air pollution

and liver cancer incidence, even at levels that are below current EU standards. These results cor-

roborate findings from several earlier, substantially smaller studies, and suggest that ambient air

pollution may increase the risk of liver cancer.

1 | INTRODUCTION

Ambient air pollution is a major environmental stressor, posing a huge

health burden related to increased risk of cardiometabolic, respiratory

disease, and lung cancer.1 A number of components presented in air

pollution are carcinogenic, including polycyclic aromatic hydrocarbons,

volatile organic compounds, and other heavy metals.2 Particulate mat-

ter (PM)2 and diesel engine exhaust3 are classified as carcinogenic to

humans, largely based on literature related to lung cancer.2,4 How-

ever, the epidemiological evidence on air pollution and cancers other

than lung cancer remains limited and inconclusive.5

Primary liver or hepatic cancer is the second leading cause of can-

cer death for men and the sixth for women, accounting for nearly

782 000 deaths (8.2% of all cancer deaths) globally in 2018.6 Alcohol

use, cigarette smoking, and Hepatitis B and C virus infections are the

main risk factors.7 Several plausible biological mechanisms support a

link between ambient air pollution and liver cancer. Exposure to PM

with diameter <2.5 μm (PM2.5) in mice led to liver fibrosis as well as

nonalcoholic steatohepatitis-like phenotype,8,9 an increasingly impor-

tant etiology of liver cancer.10 Exposure to diesel exhaust in rats cau-

sed oxidative stress with DNA damage, apoptosis, and upregulation of

DNA repair in the liver.11,12 Inhalation of particles can result in gastro-

intestinal exposure through the mucociliary clearance from the air-

ways13 or cross the alveolar-capillary barrier and reach the liver via

the circulatory system.14,15 In several human studies,16-19 air pollution

has been associated with increased serum levels of hepatic enzymes

such as γ-glutamyltranspeptidase, aspartate aminotransferase, and

alanine transaminase, markers of liver damage usually caused by

inflammation, the main mechanism by which air pollution induces

adverse health effects.20

There are only five epidemiological studies on long-term exposure

(ie, mean air pollution exposures of 1 year or more) to air pollution

and liver cancer with somewhat mixed results.19,21-24 A cohort study

from Taiwan, with 22 062 subjects and 464 liver cancer cases,

detected an association with PM2.5 and found that elevated serum

alanine transaminase levels mediated this association.19 A study in the

Danish Diet, Cancer, and Health (DCH) cohort (54 160 adults,

57 cases) reported an association with traffic density within 200 m of

the residence, but not with nitrogen oxides (NOx).
22 A study in four

European cohorts (174 770 adults, 279 cases) which took part in “The
European Study of Cohorts for Air Pollution Effects” (ESCAPE) pro-

ject, found a positive but statistically nonsignificant association with

PM2.5 and nitrogen dioxide (NO2).
23 The American Cancer Prevention

Study II (CPS-II) cohort, with 623 048 subjects and 1003 liver cancer

deaths, found no association with PM2.5, NO2, or ozone (O3).
24 A US

study (ecological study at a county level) with 56 245 cases of hepato-

cellular carcinoma, the most common histological type of liver cancer,

detected a strong positive association with PM2.5.
21 Only ESCAPE

study had data on PM elemental components and reported associa-

tions with sulfur, silicon, nickel, and iron components of PM2.5.
23

Within the “Effects of Low-level Air Pollution: a Study in Europe”
(ELAPSE) collaboration, which built on ESCAPE cohorts, we aimed to

examine the association between long-term exposure to air pollution

and liver cancer incidence and identify relevant sources by analyzing

eight specific elements of PM2.5. In contrast to the ESCAPE project,

which analyzed the individual cohort separately in a standardized way

and applied meta-analysis, we performed a pooled data analysis, applied

a European-wide harmonized air pollution exposure assessment, and

had additional years of follow-up, providing enhanced statistical power

to examine the association between air pollution and liver cancer.

2 | MATERIALS AND METHODS

2.1 | Study population

We used the framework of the ELAPSE project, under which nine

European cohorts were pooled to study health effects related to low-

level air pollution,25 stored on a secure server in Utrecht, and made

available for remote analyses.

Of the nine pooled cohorts from the ELAPSE project, we used six

from five European countries, which had information on follow-up for
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liver cancer incidence available: (a) “Cardiovascular Effects of Air Pol-
lution and Noise in Stockholm” (CEANS) from Stockholm county of

Sweden, which included four subcohorts: “Swedish National Study on

Aging and Care in Kungsholmen” (SNAC-K),26 “Stockholm Screening

Across the Lifespan Twin study” (SALT),27 “Stockholm cohort of

60-year-olds” (Sixty),28 and “Stockholm Diabetes Prevention Pro-

gram” (SDPP)29; (b) DCH30 from Copenhagen and Aarhus of Den-

mark; (c) “Danish Nurse Cohort” (DNC)31 from entire Denmark, which

included two subcohorts from recruitment rounds in 1993 and 1999;

(d) “Dutch European Investigation into Cancer and Nutrition” (EPIC-

NL)32 from four cities in the Netherland, consisting of “EPIC-
Monitoring Project on Risk Factors” (EPIC-MORGEN) and “EPIC-
Chronic Diseases in the Netherlands” (EPIC-PROSPECT); (e) “Etude
Epidémiologique auprès de femmes de la Mutuelle Générale de l'Edu-

cation Nationale” (E3N)33 from entire France; and (f) “Vorarlberg
Health Monitoring and Prevention Programme” (VHM&PP)34 from

Vorarlberg, Austria. Cohorts were recruited between 1985 and 2005

and were followed until 2011 to 2015. Individual-level information on

smoking, employment status, alcohol use, education level, and area-

level socioeconomic status (SES) have been harmonized across the

cohorts. A more detailed description of the cohorts included in this

analysis can be found in Appendix S1 (pp. 1-7).

2.2 | Liver cancer definition

We obtained the cancer diagnosis data from national and state cancer reg-

istries, except for E3N, where cancer was defined from biannual question-

naires self-reports confirmed by oncologist review of pathological reports

or from death certificates. We defined liver cancer incidence as the first

diagnosis of primary cancer in liver during the follow-up, according to the

International Classification of diseases ninth version (ICD-9) or 10th ver-

sion (ICD-10) code (155 for ICD-9 and C22 for ICD-10),23 and excluded

persons with any cancer diagnosis before cohort baseline.

2.3 | Air pollution exposure assessment

As our main exposure assessment, we used Europe-wide hybrid land-

use regression (LUR) models at a fine spatial scale (100 m � 100 m

grids) to estimate annual mean exposure to air pollutants (NO2, PM2.5,

black carbon [BC], and O3 [warm-season]) and eight elemental compo-

nents of PM2.5 for the year 2010 at the participants' residential

addresses of the baseline, described in detail elsewhere.35,36

The models for NO2, PM2.5, BC, and O3 (warm-season)35 were

developed by supervised linear regression , based on the European Envi-

ronment Agency (EEA) AirBase daily concentration data for 2010 for

PM2.5, NO2, and O3, and ESCAPE monitoring data for BC, which was

not available from EEA. For annual estimates of BC, PM2.5 absorbance

data based on reflectance measurement of the filters during 2009 and

2010 were used and treated as 2010 annual mean concentrations. The

annual warm-season average concentrations of O3 were calculated

based on the maximum running 8-hour means for each day. The input

data for the LUR models included land use and traffic data, satellite

observations, and dispersion model estimates. Ordinary kriging was used

to additionally explain the residuals of spatial variation from the LUR

model. The models explained spatial variation in the measured concen-

tration well; the R2 for NO2, PM2.5, BC, and O3 was 0.59, 0.72, 0.54,

and 0.69, respectively.

The models for PM2.5 components were developed based on

measurement data from the ESCAPE monitoring campaigns from

2008 to 2011 by two methods: supervised linear regression and ran-

dom forest.36 While model performance for explaining within-area

variability in measured concentration was similar in two, the random

forest method was better performed in explaining the overall variabil-

ity of pollutant concentration levels across Europe than the super-

vised linear regression method. Eight elements were a priori selected

based on their toxicity and representation of major pollution sources:

copper, iron, and zinc mainly from non-tailpipe traffic emissions (i.e.,

brake and tire wear), sulfur from long-range transport of secondary

inorganic aerosols from sulfur-containing fossil fuels combustion,

nickel and vanadium from coal or mixed oil burning in buildings/ships,

silicon from crustal dust, and potassium from biomass burning.36

As a sensitivity analysis, we also assessed the annual mean levels of

NO2, PM2.5, BC, and O3 for each year from recruitment to end of

follow-up by a back-extrapolation method incorporating residential his-

tory (available only for DCH, VHM&PP, CEANS, and EPIC-NL), as

described elsewhere in detail.25 Briefly, we back-extrapolated the expo-

sure estimates for the year 2010 from the LUR model, using both a dif-

ference and a ratio method with the Danish Eulerian Hemispheric Model

(DEHM)37 because the EEA AirBase data did not provide continuous

measurement of monitoring data during the study period. DEHM data

was complete with giving annual averages for all four pollutants at

26 � 26 km spatial resolution across Europe at least back to 1990 and

covered all of the study area (downscaled from the original 50 � 50 km

resolution using bilinear interpolation). The differences or the ratios of

exposure levels between each year and 2010, estimated from DEHM

models, were calculated larger spatial scale of NUTS-1 (Nomenclature of

territorial units for statistics), allowing different spatial trends within

Europe (for DCH, VHM&PP, CEANS, each cohort considered as one

region, and EPIC-NL has four regions), and were added or multiplied the

exposure estimates for the year 2010 from the LUR model at each resi-

dential. When residential history was incorporated, if someone moved

within the same NUTS-1 region, then the ratio or difference values for

each year after moving are the same as before.

Additionally, as sensitivity analyses, we used the NO2, PM2.5, and

BC estimates from models developed within the ESCAPE, which were

developed for each study area,38,39 and the PM2.5 from the Canadian

“Mortality-Air Pollution Associations in Low-Exposure Environments”
(MAPLE) project.40

2.4 | Statistical analysis

We used stratified Cox proportional hazards models with age as the

underlying time scale to examine the association between air pollution
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and liver cancer incidence. The start of follow-up was the participants'

age at cohort entry, and the end of follow-up was the age at the time of

the diagnosis of liver cancer (event), the first occurrence of any other

cancer, date of death, date of emigration, loss to follow-up, or the end of

follow-up, whichever came first. We included the subcohort indicator as

strata to account for baseline hazard heterogeneity across the cohorts.

We included one air pollutant at a time as a continuous variable

and evaluated the association with liver cancer incidence with increas-

ing adjustment for variables chosen a priori: Model 1 included age

(time axis), sex (strata), subcohort (strata), and the cohort baseline

year; Model 2 additionally included smoking (never, former, current)

and employment status (employed, other); and Model 3 (main model)

additionally included neighborhood SES (mean income in 2001). Esti-

mates for main pollutants were expressed as hazard ratio (HR) with

95% confidence interval (95% CI) for increments of 10 μg/m3 for

NO2, 5 μg/m3 for PM2.5, 0.5 � 10�5/m for BC, 10 μg/m3 for O3, and

interquartile range increase for PM2.5 components.

To evaluate the shape of the exposure-response function

between air pollutants and liver cancer incidence, we applied natural

cubic splines with two degrees of freedom, which was selected based

on the lowest Akaike Information Criteria (AIC) among various

degrees of freedom (between 2 and 4) (AIC results not shown). To

investigate the associations below the current air quality standards,

we additionally applied the main model (Model 3) to subsets where

we only included participants with concentrations below a certain

value. We evaluated cut-points of 40 (the WHO guideline and the EU

standard), 30, and 20 μg/m3 for NO2, 25 (the EU standard), 20, 15,

12 (the US-EPA NAAQS), and 10 (the WHO guideline) μg/m3

for PM2.5, 3 � 10�5, 2.5 � 10�5, 2 � 10�5, 1.5 � 10�5, and 1.0 �
10�5/m for BC, and 120, 100, and 80 μg/m3 for O3.

We fitted two-pollutant models for NO2, PM2.5, BC, and O3 to

examine the effects of pollutants independently from each other. For

PM2.5 components, we fitted two-pollutant models with PM2.5 and

NO2 as the second pollutant to assess whether associations with the

component remained after adjusting for generic PM2.5 and NO2,

which is a marker for traffic tailpipe emissions and other fossil fuel

combustion sources. The latter is especially important for the non-

tailpipe components of copper, iron, and zinc.

We investigated effect modification of the associations between

air pollutants and liver cancer by age (<65 years, ≥65 years), alcohol

intake (low: <4 g/day, medium: 4-15 g/day, high: >15 g/day), and

smoking status (never, former, current), by including an interaction

term in the model and testing with the likelihood ratio test.

We performed several sensitivity analyses: (a) In order to

account for temporal variation and spatial trend in air pollution and

residential mobility, we applied the time-varying analysis with back-

extrapolated time-varying exposure for NO2, PM2.5, BC, and O3

(excluding DNC and E3N) with controlling of time trend (strata per a

year or 5-year of follow-up time). (b) To examine the robustness of

results to using different exposure metrics, we incorporated the

main model (Model 3) for the NO2, PM2.5, and BC from the ESCAPE

model (excluding DNC and E3N) and for the PM2.5 from MAPLE.

(c) To investigate the impact of further adjustment of potential

confounders, which were not available in VHM&PP, Sixty, and

SNAC-K, we applied the main model with and without the further

adjustment to the subsets of the pooled cohort with the available

information on potential confounders. Those further adjusted vari-

ables are educational level (low: primary school or less, medium: up

to secondary school or equivalent, or high: university degree or

more) and alcohol intake (Low: <4 g/day, Medium: 4-15 g/day, or

High: ≥15 g/day). (d) To evaluate the impact of an individual cohort

on the association, we applied the main model to the subsets of data,

excluding one cohort at a time.

All statistical tests were two-sided, and P-values of <.05 were

considered statistically significant. We performed all analyses and

graphical presentations in R, version 3.4.0, with common R scripts

developed within the ELAPSE project.

3 | RESULTS

3.1 | Description of the study population and
exposure

Of the total of 367 404 participants from six pooled cohorts, we

excluded 3 348 with missing information on the date of start or end

of follow-up, 10 446 with cancer before enrollment, 136 with missing

information on the prevalent cancer status, 1 830 with missing air pol-

lution exposure data, and 21 580 with missing data on the individual-

level and area-level risk factors, leaving 330 064 participants for the

final analysis. The number of excluded subjects in each (sub) cohort is

presented in Appendix S1 (pp. 1-7).

Over a mean follow-up time of 18.1 years (5 971 185 person-

years), 512 participants developed liver cancer. Compared to those

free of liver cancer at the end of follow-up, those who developed

liver cancer were older and more likely to be men, current or former

smokers, unemployed, moderate or high alcohol drinkers, highly edu-

cated, and live in the higher-income neighborhood at baseline

(Table 1). The mean concentrations of NO2 and PM2.5 for the year

2010 at the residential address of baseline ranged from 19.8

(in CEANS) to 35.1 μg/m3 (in EPIC-NL) for NO2, and 8.1 (in CEANS)

to 17.5 μg/m3 (in EPIC-NL) for PM2.5, respectively, which were well

below the current EU standards of 40 μg/m3 for NO2 and 25 μg/m3

for PM2.5 (detailed descriptive statistics on air pollution levels for

each cohort are provided in Appendix S1, pp. 1-7). Varying levels of

exposure were observed between the individual cohorts with gener-

ally lower PM2.5 and BC in northern countries (Figure S1). For PM2.5,

exposure contrast within cohorts was smaller than for BC and NO2.

BC and NO2 were highly correlated in all cohorts (The mean of

cohort-specific Pearson correlations is 0.83), whereas PM2.5 was

moderately to highly correlated with BC and NO2 (The mean of

cohort-specific Pearson correlations is 0.57 with BC, 0.62 with NO2.

For the correlation per each cohort, see Table S1). O3 was negatively

correlated with PM2.5, especially with NO2 and BC (the mean of cor-

relations is �0.38, �0.64, and � 0.58 for PM2.5, NO2, and BC,

respectively).
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3.2 | Association between liver cancer incidence
and air pollution exposure

We found positive associations of all three main pollutants, except for O3,

with the risk of liver cancer in Model 1, which attenuated after adjustment

for smoking status and employment status in Model 2 (Table 2). In a fully

adjusted model, we detected an association between NO2 and liver cancer

incidence with a HR of 1.17 (95% CI 1.02-1.35) per 10 μg/m3, while asso-

ciations with PM2.5 (HR: 1.12 [95% CI 0.92-1.36] per 5 μg/m3) and BC

(HR: 1.15 [95% CI 1.00-1.33] per 0.5 � 10�5/m) were statistically non-

TABLE 1 Descriptive statistics for 330 064 participants at baseline by liver cancer incidence status at the end of follow-up

Characteristic

Total

(N = 330 064)

No liver cancer

(N = 329 552)

Liver cancer

(N = 512) P-valuea

Age, years

(Mean ± SD)

48.2 ± 13.4 48.2 ± 13.4 55.8 ± 8.9 <.001

Age category, N (%) .003

<65 years old 305 744 (92.6) 305 288 (92.6) 456 (89.1)

≥65 years old 24 320 (7.4) 24 264 (7.4) 56 (10.9)

Women, N (%) 220 292 (66.7) 220 104 (66.8) 188 (36.7) <.001

Smoking status, N (%) <.001

Never 180 703 (54.7) 180 461 (54.8) 242 (47.3)

Former smoker 65 465 (19.8) 65 361 (19.8) 104 (20.3)

Current smoker 83 896 (25.4) 83 730 (25.4) 166 (32.4)

Unemployed, N (%) 94 225 (28.5) 93 973 (28.5) 252 (49.2) <.001

Intake of alcoholb, N (%) <.001

Low (<4 g/day) 35 413 (23.1) 35 380 (23.1) 33 (17.9)

Medium (4–15 g/day) 58 047 (37.9) 57 996 (37.9) 51 (27.7)

High (15> g/day) 59 593 (38.9) 59 493 (38.9) 100 (54.3)

Education levelc, N (%) <.001

Low 21 148 (11.8) 21 105 (11.8) 43 (19.6)

Medium 70 980 (39.7) 70 886 (39.7) 94 (42.9)

High 86 504 (48.4) 86 422 (48.4) 82 (37.4)

Mean income at neighborhood level

in 2001, € (Mean ± SD)

19 496.2 ± 5426.5 19 494.2 ± 5428.0 20 791.4 ± 4161.3 <.001

Air pollutants for the year 2010 (Mean ± SD)

NO2, μg/m3 24.9 ± 8.0 24.9 ± 8.0 24.8 ± 7.4 .71

PM2.5, μg/m3 15.0 ± 3.2 15.0 ± 3.2 14.9 ± 2.9 .45

BC, 10�5/m 1.5 ± 0.4 1.5 ± 0.4 1.5 ± 0.4 .35

O3, μg/m3 85.6 ± 9.0 85.6 ± 9.0 85.9 ± 9.2 .38

PM2.5 components (Mean ± SD)d

Copper, ng/m3 3.5 ± 2.6 3.5 ± 2.4 3.5 ± 2.6 .82

Iron, ng/m3 87.6 ± 46.8 87.9 ± 40.9 87.6 ± 46.8 .85

Zinc, ng/m3 16.9 ± 11.3 16.1 ± 10.9 17.0 ± 11.3 .10

Sulfur, ng/m3 659.1 ± 142.1 638.8 ± 126.2 659.2 ± 142.1 .001

Nickel, ng/m3 0.8 ± 0.7 0.7 ± 0.7 0.8 ± 0.7 .10

Vanadium, ng/m3 1.4 ± 1.4 1.3 ± 1.7 1.4 ± 1.4 .58

Silicon, ng/m3 96.2 ± 21.1 97.4 ± 19.1 96.2 ± 21.1 .20

Potassium, ng/m3 167.2 ± 52.4 168.7 ± 53.8 167.2 ± 52.4 .52

Abbreviations: BC, black carbon; N, number; NO2, nitrogen dioxide; O3, ozone; PM2.5, particulate matter with aerodynamic diameters of less than 2.5 μm;

SD, standard deviation.
aThe t-test for a continuous variable and chi-square test for a discrete variable to test the difference of a participant characteristic variable between cases

and non-cases.
bn = 153 043.
cn = 178 632, low: primary school or less, medium: up to secondary school or equivalent, or high: university degree or more.
dBased on the supervised linear regression exposure model.
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TABLE 2 Associations between long-term exposure to air pollution and the risk for liver cancer incidence

Air
pollutant Model 1a Model 2b Model 3c

Two-pollutant model

Model 3 + NO2 Model 3 + PM2.5 Model 3 + BC Model 3 + O3

NO2 1.14 (1.00-1.31) 1.12 (0.98-1.29) 1.17 (1.02-1.35) – 1.19 (1.00-1.43) 1.22 (0.87-1.70)d 0.95 (0.78-1.16)

PM2.5 1.10 (0.91-1.33) 1.09 (0.90-1.32) 1.12 (0.92-1.36) 0.96 (0.75-1.23) – 0.98 (0.76-1.27) 0.88 (0.70-1.11)

BC 1.13 (0.98-1.30) 1.11 (0.97-1.28) 1.15 (1.00-1.33) 0.96 (0.68-1.36)d 1.16 (0.96-1.41) – 0.94 (0.77-1.14)

O3 0.69 (0.58-0.84) 0.71 (0.59-0.86) 0.70 (0.58-0.85) 0.67 (0.51-0.88) 0.66 (0.52-0.82) 0.66 (0.51-0.86) –

Note: Results are presented as hazard ratio and 95% confidence interval [HR (95% CI)] for the following increments: 5 μg/m3 for PM2.5, 10 μg/m3 for NO2,

0.5 10�5 /m for BC and 10 μg/m3 for O3.

Abbreviations: BC, black carbon; CI, confidence interval; HR, hazard ratio; NO2, nitrogen dioxide; O3, ozone; PM2.5, particulate matters with aerodynamic

diameters of less than 2.5 μm.
aModel 1 was adjusted for age (time scale), sex (strata), subcohort (strata), and calendar year of baseline.
bModel 2 was adjusted for age (time scale), sex (strata), subcohort (strata), and calendar year of baseline, smoking status, and employment status.
cModel 3 was adjusted for age (time scale), sex (strata), subcohort (strata), calendar year of baseline, smoking status, employment status, and mean income

at the neighborhood level in 2001.
dThe results from the model with NO2 and BC are difficult to interpret because of their high correlation, which reached 0.83.
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F IGURE 1 Estimated exposure-response curves for associations between (A) NO2, (B) PM2.5, (C) BC, and (D) O3 concentration at the
residential addresses of baseline and liver cancer incidence. NO2, nitrogen dioxide; PM2.5, particulate matter with aerodynamic diameters of less
than 2.5 μm; BC, black carbon; O3, ozone. Natural splines with 2 degrees of freedom. Black solid lines indicate hazard ratio values, and dashed
lines indicate their 95% confidence intervals. Gray vertical dotted lines mean the values used for the subset analyses. Models were adjusted for
age (time scale), sex (strata), sub-cohort (strata), calendar year of baseline, smoking status, employment status, and mean income at the
neighborhood level in 2001

SO ET AL. 7



significant. The modest attenuation in HRs for NO2, PM2.5, and BC from

Model 1 to Model 2 was mainly due to adjustment for smoking, while the

inclusion of neighborhood SES in the model modestly increased HRs.

However, differences in HRs between Models 1, 2, and 3 were small,

suggesting limited confounding. A statistically significant negative associa-

tion was observed with O3.

In the two pollutant models, the associations for NO2 remained

positive after adjusting for PM2.5 or BC (HR: 1.19 [95% CI 1.00-1.43]

TABLE 3 Associations between long-
term exposure to air pollution and
incident liver cancer, below various cut-
points

Air pollutants Subseta Participants, N Cases, N Hazard ratio (95% CI)b

NO2 Full dataset 330 064 512 1.17 (1.02-1.35)

<40 μg/m3 (EU standard) 315 023 498 1.20 (1.03-1.40)

<30 μg/m3 252 154 392 1.03 (0.83-1.28)

<20 μg/m3 90 300 135 1.01 (0.57-1.77)

PM2.5 Full dataset 330 064 512 1.12 (0.92-1.36)

<25 μg/m3 (EU standard) 330 024 512 1.12 (0.92-1.36)

<20 μg/m3 320 759 505 1.12 (0.92-1.36)

<15 μg/m3 153 720 264 1.56 (0.96-2.55)

<12 μg/m3 52 349 72 1.02 (0.32-3.26)

<10 μg/m3 24 495 24 0.39 (0.06-2.73)

BC Full dataset 330 064 512 1.15 (1.00-1.33)

<3.0 � 10�5/m 329 305 512 1.17 (1.01-1.35)

<2.5 � 10�5/m 324 258 506 1.16 (0.99-1.35)

<2.0 � 10�5/m 299 519 471 1.16 (0.97-1.38)

<1.5 � 10�5/m 142 778 206 1.29 (0.91-1.84)

<1.0 � 10�5/m 34 477 37 0.57 (0.20-1.61)

O3 Full dataset 330 064 512 0.70 (0.58-0.85)

<120 μg/m3 330 064 512 0.70 (0.58-0.85)

<100 μg/m3 324 120 507 0.67 (0.55-0.81)

<80 μg/m3 97 767 142 0.65 (0.45-0.95)

Abbreviations: BC, black carbon; CI, confidence interval; N, number; NO2, nitrogen dioxide; O3, ozone

PM2.5, particulate matters with aerodynamic diameters of less than 2.5 μm.
aParticipants with concentrations above a cut-point were excluded.
bFrom models adjusting for age (time scale), sex (strata), subcohort (strata), calendar year of baseline,

smoking status, employment status, and mean income at the neighborhood level in 2001.
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F IGURE 2 Associations between PM2.5 components and liver cancer incidence. PM2.5, particulate matter with aerodynamic diameters of less
than 2.5 μm; NO2, nitrogen dioxide. Models were adjusted for age (time scale), sex (strata), sub-cohort (strata), calendar year of baseline, smoking
status, employment status, and mean income at the neighborhood level in 2001. Associations were expressed as hazard ratios with 95%
confidence intervals per interquartile range increase for each of PM2.5 components: 3.7 ng/m3 for copper, 55.8 ng/m3 for iron, 10.7 ng/m3 for
zinc, 212.2 ng/m3 for sulfur, 0.8 ng/m3 for nickel, 1.7 ng/m3 for vanadium, 24.1 ng/m3 for silicon, and 82.3 ng/m3 for potassium. PM2.5

components were estimated by the supervised linear regression method
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and 1.22 [95% CI] 0.87-1.70, respectively), while those for PM2.5

attenuated to unity after adjusting for NO2 or BC. The HRs for BC

attenuated to unity after adjusting for NO2 and remained unchanged

after adjusting for PM2.5 (HR: 1.16 [95% CI: 0.96-1.41]). Furthermore,

the associations with NO2, PM2.5, and BC attenuated to unity after

adjustment O3 but remained unchanged for O3, possibly reflecting

negative correlations between O3 and other urban or traffic-related

pollutants than NO2 and BC. Due to the high correlation between BC

and NO2, as well as NO2 and O3, these two pollutant models should

be interpreted with caution.

We observed no deviations from linearity for the associations

with PM2.5, NO2, and BC (Figure 1). Associations with NO2 and PM2.5

persisted below current EU standards of 40 and 25 μg/m3 for NO2

and PM2.5, respectively, but leveled off at below 30 μg/m3 for

NO2 and 12 μg/m3 for PM2.5 (Table 3). The associations with BC were

persisted in the subset with the concentration below 1.5 � 10�5/m.

The associations between NO2 and liver cancer were statistically

significantly stronger in older participants, while no interaction was

detected with alcohol intake and smoking status (Table S2).

Observed associations with NO2, PM2.5, and BC were robust to

including time-varying air pollution concentrations and control for time

trends (Table S3). Analyses using alternative air pollution exposure esti-

mates from ESCAPE and MAPLE project showed stronger associations

with liver cancer, but presented the overlapped confidence intervals

(Tables S4 and S5) compared to those with ELAPSE exposure model.

Associations were also robust to additional adjustments for edu-

cation level or alcohol intake (Table S6) and to the exclusion of one

cohort at a time except for association with PM2.5, which attenuated

to unity after exclusion of VHM&PP (Table S7).

3.3 | Association between liver cancer incidence
and PM2.5 components exposure

Single pollutant models for PM2.5 components estimated by super-

vised linear regression showed statistically significant HRs for almost

all components, with the strongest associations with sulfur and vana-

dium (Figure 2; Table S8). For PM2.5 components estimated with the

random forest method, weaker associations were observed than those

with the supervised linear regression method for all components, sta-

tistically significant only for sulfur and vanadium (Table S8). Associa-

tions were mostly robust (slightly attenuated or enhanced) to

adjustment for PM2.5 and NO2 (Figure 2).

4 | DISCUSSION

In this pooled analysis of six cohorts from five European countries, we

detected associations between long-term exposure to NO2, PM2.5,

and BC and liver cancer incidence. The exposure-response curves

were linear for all three pollutants, and the associations persisted

below the current EU standards for NO2 and PM2.5. We found associ-

ations with sulfur and vanadium components of PM2.5.

Previous studies on air pollution and liver cancer generally

reported associations, though mostly not statistically signifi-

cant.19,21-24 In our study, HR per 10 μg/m3 increase in NO2 was 1.17

(95% CI 1.02-1.35), stronger but comparable to that of 1.10 (95%

CI 0.93-1.30) from the ESCAPE.23 The DCH cohort study22 reported

HR of 1.66 (95% CI 0.70-3.94) per 100 μg/m3 increase in NOx, and

the American CPS-II study24 found no association between NO2 and

liver cancer mortality (HR: 1.03 [95% CI 0.93-1.14] per 6.5 ppb

[�12 μg/m3] increase in NO2). In the American CPS-II study,24 only

primary liver cancer death was included, and since liver cancer is a

highly fatal cancer type, results from this study are comparable with

those from ours on liver cancer incidence. With re-calculated HRs of

each study per the same unit as ours (per 5 μg/m3 for PM2.5) for the

comparison, our findings of the association between PM2.5 and liver

cancer with a HR of 1.12 (95% CI 0.92-1.36) was weaker than one

reported in ESCAPE study (HR: 1.34 [95% CI 0.76-2.35]), compara-

ble to those reported in the US study21 with a HR of 1.12 (95% CI

1.03-1.21), and stronger than Pan et al.19 study with a HR of 1.08

(95% CI 0.98-1.17) and the American CPS-II study24 with a mortality

rate ratio of 1.06 (95% CI 0.93-1.18). Our finding of an association

between BC and liver cancer incidence with a HR of 1.15 (95% CI

1.00-1.33) per 0.5 � 10�5/m showed a more precise estimate com-

pared to the ESCAPE finding with PM2.5 absorbance (BC equivalent)

with a HR of 1.21 (95% CI 0.68-2.15) per 10�5/m increase. Two pol-

lutant models showed robust associations with NO2 and BC after

adjustment of PM2.5, indicating the relevance of traffic emission-

related pollution for liver cancer. However, we cannot determine

whether NO2 per se or the associated gaseous pollutants and parti-

cles from local combustion sources are responsible for the observed

association. Finally, we found an inverse association between O3

and liver cancer, whereas the only other study on O3 and liver can-

cer, the American CPS-II study, found no association.24 Despite the

varying size and statistical power to detect associations with this

rare cancer type, all studies to date on NO2, PM2.5, and BC, report

HRs above 1.

We present novel findings on the association between specific

elemental components of PM2.5 and liver cancer. A single previous

study23 on elemental components in PM and liver cancer incidence

detected associations with sulfur, silicon, nickel, and iron components

of PM2.5. Our association with the sulfur component of PM2.5 is con-

sistent with this study23 and indicates the possible relevance of long-

range transported secondary inorganic aerosols from sulfur-containing

fossil fuels combustion. Furthermore, the strong association with the

vanadium component of PM2.5 is in line with the large population-

based cohort study in Rome41 showing a strong association between

the vanadium component of PM10 and liver cirrhosis, as well as exper-

imental studies42,43 showing the association of inhaled vanadium with

oxidative stress and cell alteration suggestive for liver regeneration.

Still, overall evidence on which components and sources of air pollu-

tion are most relevant for liver cancer development is premature and

demands attention in future research.

Our main strength is the large sample size obtained by pooling six

European cohorts with a long follow-up over 18 years and sufficient

SO ET AL. 9



statistical power to examine the association between air pollution and

this rare cancer type. Furthermore, we benefited from the European-

wide air pollution exposure model which provided comparable air pol-

lution data over the six European cohorts, detailed data on relevant

confounders, and liver cancer incidence information from cancer reg-

istries with high validity. Limitations include lack of information on

occupational exposures such as benzene (one of the hepatotoxic

chemicals), alcohol intake, and hepatitis B or C infection status. Addi-

tional adjustment for alcohol intake (Table S6) did not affect the

main results. Furthermore, we adjusted for SES, a strong determinant

of hepatitis B or C infection.44,45 Furthermore, the differences in the

two air pollution exposure modeling approach used in ESCAPE and

ELAPSE projects may explain the difference in risk estimates in the

sensitivity analysis (Table S4). Briefly, unlike our main exposure

assessment method of Europe-wide hybrid LUR model, the ESCAPE

model was the LUR model developed for each study area, using local

predictor data. The discrepancy in distributions of air pollution expo-

sure concentrations between two exposure assessment methods can

be checked elsewhere.25

In conclusion, our study suggests that long-term exposure to air

pollution may increase the risk of liver cancer, even at concentrations

below current EU standards, and adds evidence of detrimental health

effects of air pollution on cancers other than lung cancer.
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