Received: 23 January 2021 Revised: 25 May 2021 Accepted: 16 June 2021

DOI: 10.1002/ijc.33743

CANCER EPIDEMIOLOGY

Long-term exposure to air pollution and liver cancer incidence in six European cohorts

Rina So¹ | Jie Chen² | Amar J. Mehta^{3,4} | Shuo Liu¹ | Maciei Strak^{2,5} | Kathrin Wolf⁶ | Ulla A. Hvidtfeldt⁷ | Sophia Rodopoulou⁸ | Massimo Stafoggia^{9,10} | Jochem O. Klompmaker^{2,5} | Evangelia Samoli⁸ | Ole Raaschou-Nielsen^{7,11} | Richard Atkinson¹² | Mariska Bauwelinck¹³ | Tom Bellander^{9,14} | Marie-Christine Boutron-Ruault¹⁵ | Jørgen Brandt^{11,16} Bert Brunekreef² | Giulia Cesaroni¹⁰ | Hans Concin¹⁷ | Francesco Forastiere^{18,19} | Carla H. van Gils²⁰ | John Gulliver²¹ | Ole Hertel²² | Barbara Hoffmann²³ | Kees de Hoogh^{24,25} | Nicole Janssen⁵ | Youn-hee Lim¹ | Rudi Westendorp^{4,26} I Jeanette T. Jørgensen¹ | Klea Katsouyanni^{8,27} | Matthias Ketzel^{11,28} | Anton Lager²⁹ | Alois Lang¹⁷ | Petter L. Ljungman^{9,30} | Patrik K.E. Magnusson³¹ | Gabriele Nagel^{17,32} | Mette K. Simonsen³³ | Göran Pershagen^{9,14} Raphael S. Peter³² | Annette Peters^{6,34} | Matteo Renzi¹⁰ | Debora Rizzuto³⁵ | Torben Sigsgaard³⁶ | Danielle Vienneau^{24,25} | Gudrun Weinmayr³² | Gianluca Severi^{15,37} | Daniela Fecht³⁸ | Anne Tjønneland^{1,7} | Karin Leander^{9,30} Gerard Hoek² | Zorana J. Andersen¹

¹Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark ²Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands

³Statistics Denmark, Copenhagen, Denmark

⁴Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

⁵National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

⁶Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany

⁷Danish Cancer Society Research Centre, Copenhagen, Denmark

⁸Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School, Athens, Greece

⁹Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden

¹⁰Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Rome, Italy

¹¹Department of Environmental Science, Aarhus University, Roskilde, Denmark

ABBREVIATIONS: BC, black carbon; CEANS, Cardiovascular Effects of Air Pollution and Noise in Stockholm (cohort); CI, confidence interval; CPS-II, Cancer Prevention Study II; DCH, Diet, Cancer and Health (cohort); DNC, Danish Nurse Cohort; DEHM, Danish Eulerian Hemispheric Model; E3N, Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale (cohort); EEA, European Environment Agency; ELAPSE, Effects of Low-Level Air Pollution (project); EPIC-MORGEN, EPIC-Monitoring Project on Risk Factor (cohort); EPIC-NL, Dutch European Investigation into Cancer and Nutrition (cohort); EPIC-PROSPECT, EPIC-Chronic Diseases in the Netherlands; ESCAPE, European Study of Cohorts for Air Pollution Effects (project); HR, hazard ratio; ICD-10, International Classification of diseases 10th version; ICD-9, International Classification of diseases ninth version; MAPLE, Mortality-Air Pollution Associations in Low-Exposure Environments (project); NO₂, nitrogen disvide; NO₃, nitrogen oxide; NUTS-1, Nomenclature of territorial units for statistics; O₃, ozone; PM, particulate matter; PM_{2.5}, particulate matter with diameter <2.5 µm; SALT, Stockholm Screening Across the Lifespan Twin study (cohort); SDPP, Stockholm Diabetes Prevention Program (cohort); SES, socioeconomic status; Sixty, Stockholm cohort of 60-year-olds (cohort); SNAC-K, Swedish National Study on Aging and Care in Kungsholmen (cohort); VHM&PP, Vorarlberg Health Monitoring and Prevention Program (cohort).

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2021 The Authors. *International Journal of Cancer* published by John Wiley & Sons Ltd on behalf of UICC.

2

¹²Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK

¹³Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium

¹⁴Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden

¹⁵CESP, UMR 1018, Universit´e Paris-Saclay, Inserm, Gustave Roussy, Villejuif, France

¹⁶iClimate, Aarhus University interdisciplinary Centre for Climate Change, Roskilde, Denmark

¹⁷Agency for Preventive and Social Medicine, Bregenz, Austria

¹⁸Environmental Research Group, School of Public Health, Imperial College, London, UK

¹⁹Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy

²⁰Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands

²¹Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, UK

²²Department of Bioscience, Aarhus University, Roskilde, Denmark

²³Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany

²⁴Swiss Tropical and Public Health Institute, Basel, Switzerland

²⁵University of Basel, Basel, Switzerland

²⁶Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark

²⁷Environmental Research Group, School of Public Health, Imperial College London, London, UK

²⁸Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, UK

²⁹Department of Global Public Health, Karolinksa Institutet, Stockholm, Sweden

³⁰Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden

³¹Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

³²Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany

³³Department of Neurology and Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark

³⁴Ludwig-Maximilians University, Munich, Germany

³⁵Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University and The Stockholm Gerontology Research Center, Stockholm, Sweden

³⁶Department of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark

³⁷Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy

³⁸UK Small Area Health Statistics Unit, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK

Correspondence

Rina So, Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Øster Farimagsgade 5, Copenhagen, Denmark. Email: rina.so@sund.ku.dk; rinani616@ gmail.com

Funding information

Health Effects Institute Research Agreement, Grant/Award Number: 4954-RFA14-3/16-5-3; Novo Nordisk Foundation Challenge Programme, Grant/Award Number: NNF17OC0027812

Abstract

Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO₂), particulate matter with diameter <2.5 μ m (PM_{2.5}), black carbon (BC), warm-season ozone (O₃), and eight elemental components of PM_{2.5} (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO₂ (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 μ g/m³), $PM_{2.5}$ (1.12, 0.92-1.36 per 5 μ g/m³), and BC (1.15, 1.00-1.33 per 0.5 10^{-5} /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM_{2.5}. Most components of PM_{2.5} were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM_{2.5} or NO₂. Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.

KEYWORDS

air pollution, cohort study, liver cancer incidence, particulate matter

What's new?

Air pollution contains a number of known carcinogens. While air pollution is classified as carcinogenic and is a known risk factor for lung cancer, the evidence for cancers in other organs is limited. In this large European study, the authors detected associations between air pollution and liver cancer incidence, even at levels that are below current EU standards. These results corroborate findings from several earlier, substantially smaller studies, and suggest that ambient air pollution may increase the risk of liver cancer.

1 | INTRODUCTION

Ambient air pollution is a major environmental stressor, posing a huge health burden related to increased risk of cardiometabolic, respiratory disease, and lung cancer.¹ A number of components presented in air pollution are carcinogenic, including polycyclic aromatic hydrocarbons, volatile organic compounds, and other heavy metals.² Particulate matter (PM)² and diesel engine exhaust³ are classified as carcinogenic to humans, largely based on literature related to lung cancer.^{2,4} However, the epidemiological evidence on air pollution and cancers other than lung cancer remains limited and inconclusive.⁵

Primary liver or hepatic cancer is the second leading cause of cancer death for men and the sixth for women, accounting for nearly 782 000 deaths (8.2% of all cancer deaths) globally in 2018.⁶ Alcohol use, cigarette smoking, and Hepatitis B and C virus infections are the main risk factors.⁷ Several plausible biological mechanisms support a link between ambient air pollution and liver cancer. Exposure to PM with diameter <2.5 µm (PM_{2.5}) in mice led to liver fibrosis as well as nonalcoholic steatohepatitis-like phenotype,^{8,9} an increasingly important etiology of liver cancer.¹⁰ Exposure to diesel exhaust in rats caused oxidative stress with DNA damage, apoptosis, and upregulation of DNA repair in the liver.^{11,12} Inhalation of particles can result in gastrointestinal exposure through the mucociliary clearance from the airways¹³ or cross the alveolar-capillary barrier and reach the liver via the circulatory system.^{14,15} In several human studies,¹⁶⁻¹⁹ air pollution has been associated with increased serum levels of hepatic enzymes such as y-glutamyltranspeptidase, aspartate aminotransferase, and alanine transaminase, markers of liver damage usually caused by inflammation, the main mechanism by which air pollution induces adverse health effects.²⁰

There are only five epidemiological studies on long-term exposure (ie, mean air pollution exposures of 1 year or more) to air pollution and liver cancer with somewhat mixed results.^{19,21-24} A cohort study from Taiwan, with 22 062 subjects and 464 liver cancer cases, detected an association with PM_{2.5} and found that elevated serum alanine transaminase levels mediated this association.¹⁹ A study in the Danish Diet, Cancer, and Health (DCH) cohort (54 160 adults, 57 cases) reported an association with traffic density within 200 m of the residence, but not with nitrogen oxides (NO_x) .²² A study in four European cohorts (174 770 adults, 279 cases) which took part in "The European Study of Cohorts for Air Pollution Effects" (ESCAPE) project, found a positive but statistically nonsignificant association with PM_{2.5} and nitrogen dioxide (NO_2) .²³ The American Cancer Prevention Study II (CPS-II) cohort, with 623 048 subjects and 1003 liver cancer deaths, found no association with PM_{2.5}, NO₂, or ozone (O_3) .²⁴ A US study (ecological study at a county level) with 56 245 cases of hepatocellular carcinoma, the most common histological type of liver cancer, detected a strong positive association with PM_{2.5}.²¹ Only ESCAPE study had data on PM elemental components of PM_{2.5}.²³

Within the "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration, which built on ESCAPE cohorts, we aimed to examine the association between long-term exposure to air pollution and liver cancer incidence and identify relevant sources by analyzing eight specific elements of PM_{2.5}. In contrast to the ESCAPE project, which analyzed the individual cohort separately in a standardized way and applied meta-analysis, we performed a pooled data analysis, applied a European-wide harmonized air pollution exposure assessment, and had additional years of follow-up, providing enhanced statistical power to examine the association between air pollution and liver cancer.

2 | MATERIALS AND METHODS

2.1 | Study population

We used the framework of the ELAPSE project, under which nine European cohorts were pooled to study health effects related to low-level air pollution,²⁵ stored on a secure server in Utrecht, and made available for remote analyses.

Of the nine pooled cohorts from the ELAPSE project, we used six from five European countries, which had information on follow-up for

@uicc

liver cancer incidence available: (a) "Cardiovascular Effects of Air Pollution and Noise in Stockholm" (CEANS) from Stockholm county of Sweden, which included four subcohorts: "Swedish National Study on Aging and Care in Kungsholmen" (SNAC-K),²⁶ "Stockholm Screening Across the Lifespan Twin study" (SALT),²⁷ "Stockholm cohort of 60-year-olds" (Sixty),²⁸ and "Stockholm Diabetes Prevention Program" (SDPP)²⁹; (b) DCH³⁰ from Copenhagen and Aarhus of Denmark; (c) "Danish Nurse Cohort" (DNC)³¹ from entire Denmark, which included two subcohorts from recruitment rounds in 1993 and 1999; (d) "Dutch European Investigation into Cancer and Nutrition" (EPIC-NL)32 from four cities in the Netherland, consisting of "EPIC-Monitoring Project on Risk Factors" (EPIC-MORGEN) and "EPIC-Chronic Diseases in the Netherlands" (EPIC-PROSPECT): (e) "Etude Epidémiologique auprès de femmes de la Mutuelle Générale de l'Education Nationale" (E3N)³³ from entire France: and (f) "Vorarlberg Health Monitoring and Prevention Programme" (VHM&PP)³⁴ from Vorarlberg, Austria. Cohorts were recruited between 1985 and 2005 and were followed until 2011 to 2015. Individual-level information on smoking, employment status, alcohol use, education level, and arealevel socioeconomic status (SES) have been harmonized across the cohorts. A more detailed description of the cohorts included in this analysis can be found in Appendix S1 (pp. 1-7).

2.2 | Liver cancer definition

We obtained the cancer diagnosis data from national and state cancer registries, except for E3N, where cancer was defined from biannual questionnaires self-reports confirmed by oncologist review of pathological reports or from death certificates. We defined liver cancer incidence as the first diagnosis of primary cancer in liver during the follow-up, according to the International Classification of diseases ninth version (ICD-9) or 10th version (ICD-10) code (155 for ICD-9 and C22 for ICD-10),²³ and excluded persons with any cancer diagnosis before cohort baseline.

2.3 | Air pollution exposure assessment

As our main exposure assessment, we used Europe-wide hybrid landuse regression (LUR) models at a fine spatial scale (100 m \times 100 m grids) to estimate annual mean exposure to air pollutants (NO₂, PM_{2.5}, black carbon [BC], and O₃ [warm-season]) and eight elemental components of PM_{2.5} for the year 2010 at the participants' residential addresses of the baseline, described in detail elsewhere.^{35,36}

The models for NO₂, PM_{2.5}, BC, and O₃ (warm-season)³⁵ were developed by supervised linear regression , based on the European Environment Agency (EEA) AirBase daily concentration data for 2010 for PM_{2.5}, NO₂, and O₃, and ESCAPE monitoring data for BC, which was not available from EEA. For annual estimates of BC, PM_{2.5} absorbance data based on reflectance measurement of the filters during 2009 and 2010 were used and treated as 2010 annual mean concentrations. The annual warm-season average concentrations of O₃ were calculated based on the maximum running 8-hour means for each day. The input

data for the LUR models included land use and traffic data, satellite observations, and dispersion model estimates. Ordinary kriging was used to additionally explain the residuals of spatial variation from the LUR model. The models explained spatial variation in the measured concentration well; the R^2 for NO₂, PM_{2.5}, BC, and O₃ was 0.59, 0.72, 0.54, and 0.69, respectively.

The models for PM_{2.5} components were developed based on measurement data from the ESCAPE monitoring campaigns from 2008 to 2011 by two methods: supervised linear regression and random forest.³⁶ While model performance for explaining within-area variability in measured concentration was similar in two, the random forest method was better performed in explaining the overall variability of pollutant concentration levels across Europe than the supervised linear regression method. Eight elements were a priori selected based on their toxicity and representation of major pollution sources: copper, iron, and zinc mainly from non-tailpipe traffic emissions (i.e., brake and tire wear), sulfur from long-range transport of secondary inorganic aerosols from sulfur-containing fossil fuels combustion, nickel and vanadium from coal or mixed oil burning in buildings/ships, silicon from crustal dust, and potassium from biomass burning.³⁶

As a sensitivity analysis, we also assessed the annual mean levels of NO₂, PM_{2.5}, BC, and O₃ for each year from recruitment to end of follow-up by a back-extrapolation method incorporating residential history (available only for DCH, VHM&PP, CEANS, and EPIC-NL), as described elsewhere in detail.²⁵ Briefly, we back-extrapolated the exposure estimates for the year 2010 from the LUR model, using both a difference and a ratio method with the Danish Eulerian Hemispheric Model (DEHM)³⁷ because the EEA AirBase data did not provide continuous measurement of monitoring data during the study period. DEHM data was complete with giving annual averages for all four pollutants at 26×26 km spatial resolution across Europe at least back to 1990 and covered all of the study area (downscaled from the original 50 \times 50 km resolution using bilinear interpolation). The differences or the ratios of exposure levels between each year and 2010, estimated from DEHM models, were calculated larger spatial scale of NUTS-1 (Nomenclature of territorial units for statistics), allowing different spatial trends within Europe (for DCH, VHM&PP, CEANS, each cohort considered as one region, and EPIC-NL has four regions), and were added or multiplied the exposure estimates for the year 2010 from the LUR model at each residential. When residential history was incorporated, if someone moved within the same NUTS-1 region, then the ratio or difference values for each year after moving are the same as before.

Additionally, as sensitivity analyses, we used the NO₂, PM_{2.5}, and BC estimates from models developed within the ESCAPE, which were developed for each study area,^{38,39} and the PM_{2.5} from the Canadian "Mortality-Air Pollution Associations in Low-Exposure Environments" (MAPLE) project.⁴⁰

2.4 | Statistical analysis

We used stratified Cox proportional hazards models with age as the underlying time scale to examine the association between air pollution

5

and liver cancer incidence. The start of follow-up was the participants' age at cohort entry, and the end of follow-up was the age at the time of the diagnosis of liver cancer (event), the first occurrence of any other cancer, date of death, date of emigration, loss to follow-up, or the end of follow-up, whichever came first. We included the subcohort indicator as strata to account for baseline hazard heterogeneity across the cohorts.

We included one air pollutant at a time as a continuous variable and evaluated the association with liver cancer incidence with increasing adjustment for variables chosen a priori: Model 1 included age (time axis), sex (strata), subcohort (strata), and the cohort baseline year; Model 2 additionally included smoking (never, former, current) and employment status (employed, other); and Model 3 (main model) additionally included neighborhood SES (mean income in 2001). Estimates for main pollutants were expressed as hazard ratio (HR) with 95% confidence interval (95% Cl) for increments of 10 µg/m³ for NO₂, 5 µg/m³ for PM_{2.5}, 0.5 × 10⁻⁵/m for BC, 10 µg/m³ for O₃, and interquartile range increase for PM_{2.5} components.

To evaluate the shape of the exposure-response function between air pollutants and liver cancer incidence, we applied natural cubic splines with two degrees of freedom, which was selected based on the lowest Akaike Information Criteria (AIC) among various degrees of freedom (between 2 and 4) (AIC results not shown). To investigate the associations below the current air quality standards, we additionally applied the main model (Model 3) to subsets where we only included participants with concentrations below a certain value. We evaluated cut-points of 40 (the WHO guideline and the EU standard), 30, and 20 μ g/m³ for NO₂, 25 (the EU standard), 20, 15, 12 (the US-EPA NAAQS), and 10 (the WHO guideline) μ g/m³ for PM_{2.5}, 3×10^{-5} , 2.5×10^{-5} , 2×10^{-5} , 1.5×10^{-5} , and 1.0×10^{-5} /m for BC, and 120, 100, and 80 μ g/m³ for O₃.

We fitted two-pollutant models for NO₂, PM_{2.5}, BC, and O₃ to examine the effects of pollutants independently from each other. For PM_{2.5} components, we fitted two-pollutant models with PM_{2.5} and NO₂ as the second pollutant to assess whether associations with the component remained after adjusting for generic PM_{2.5} and NO₂, which is a marker for traffic tailpipe emissions and other fossil fuel combustion sources. The latter is especially important for the nontailpipe components of copper, iron, and zinc.

We investigated effect modification of the associations between air pollutants and liver cancer by age (<65 years, ≥65 years), alcohol intake (low: <4 g/day, medium: 4-15 g/day, high: >15 g/day), and smoking status (never, former, current), by including an interaction term in the model and testing with the likelihood ratio test.

We performed several sensitivity analyses: (a) In order to account for temporal variation and spatial trend in air pollution and residential mobility, we applied the time-varying analysis with backextrapolated time-varying exposure for NO₂, PM_{2.5}, BC, and O₃ (excluding DNC and E3N) with controlling of time trend (strata per a year or 5-year of follow-up time). (b) To examine the robustness of results to using different exposure metrics, we incorporated the main model (Model 3) for the NO₂, PM_{2.5}, and BC from the ESCAPE model (excluding DNC and E3N) and for the PM_{2.5} from MAPLE. (c) To investigate the impact of further adjustment of potential confounders, which were not available in VHM&PP, Sixty, and SNAC-K, we applied the main model with and without the further adjustment to the subsets of the pooled cohort with the available information on potential confounders. Those further adjusted variables are educational level (low: primary school or less, medium: up to secondary school or equivalent, or high: university degree or more) and alcohol intake (Low: <4 g/day, Medium: 4-15 g/day, or High: ≥15 g/day). (d) To evaluate the impact of an individual cohort on the association, we applied the main model to the subsets of data, excluding one cohort at a time.

@uicc

ПC

All statistical tests were two-sided, and P-values of <.05 were considered statistically significant. We performed all analyses and graphical presentations in R, version 3.4.0, with common R scripts developed within the ELAPSE project.

3 | RESULTS

3.1 | Description of the study population and exposure

Of the total of 367 404 participants from six pooled cohorts, we excluded 3 348 with missing information on the date of start or end of follow-up, 10 446 with cancer before enrollment, 136 with missing information on the prevalent cancer status, 1 830 with missing air pollution exposure data, and 21 580 with missing data on the individual level and area-level risk factors, leaving 330 064 participants for the final analysis. The number of excluded subjects in each (sub) cohort is presented in Appendix S1 (pp. 1-7).

Over a mean follow-up time of 18.1 years (5 971 185 personyears), 512 participants developed liver cancer. Compared to those free of liver cancer at the end of follow-up, those who developed liver cancer were older and more likely to be men, current or former smokers, unemployed, moderate or high alcohol drinkers, highly educated, and live in the higher-income neighborhood at baseline (Table 1). The mean concentrations of NO₂ and PM_{2.5} for the year 2010 at the residential address of baseline ranged from 19.8 (in CEANS) to 35.1 µg/m³ (in EPIC-NL) for NO₂, and 8.1 (in CEANS) to 17.5 μ g/m³ (in EPIC-NL) for PM_{2.5}, respectively, which were well below the current EU standards of 40 μ g/m³ for NO₂ and 25 μ g/m³ for PM_{2.5} (detailed descriptive statistics on air pollution levels for each cohort are provided in Appendix S1, pp. 1-7). Varying levels of exposure were observed between the individual cohorts with generally lower PM_{2.5} and BC in northern countries (Figure S1). For PM_{2.5}, exposure contrast within cohorts was smaller than for BC and NO₂. BC and NO₂ were highly correlated in all cohorts (The mean of cohort-specific Pearson correlations is 0.83), whereas PM_{2.5} was moderately to highly correlated with BC and NO2 (The mean of cohort-specific Pearson correlations is 0.57 with BC, 0.62 with NO₂. For the correlation per each cohort, see Table S1). O₃ was negatively correlated with PM_{2.5}, especially with NO₂ and BC (the mean of correlations is -0.38, -0.64, and -0.58 for PM_{2.5}, NO₂, and BC, respectively).

TABLE 1 Descriptive statistics for 330 064 participants at baseline by liver cancer incidence status at the end of follow-up

Characteristic	Total (N = 330 064)	No liver cancer (N = 329 552)	Liver cancer (N = 512)	P-value ^a
Age, years (Mean ± SD)	48.2 ± 13.4	48.2 ± 13.4	55.8 ± 8.9	<.001
Age category, N (%)				.003
<65 years old	305 744 (92.6)	305 288 (92.6)	456 (89.1)	
≥65 years old	24 320 (7.4)	24 264 (7.4)	56 (10.9)	
Women, N (%)	220 292 (66.7)	220 104 (66.8)	188 (36.7)	<.001
Smoking status, N (%)				<.001
Never	180 703 (54.7)	180 461 (54.8)	242 (47.3)	
Former smoker	65 465 (19.8)	65 361 (19.8)	104 (20.3)	
Current smoker	83 896 (25.4)	83 730 (25.4)	166 (32.4)	
Unemployed, N (%)	94 225 (28.5)	93 973 (28.5)	252 (49.2)	<.001
Intake of alcohol ^b , N (%)				<.001
Low (<4 g/day)	35 413 (23.1)	35 380 (23.1)	33 (17.9)	
Medium (4–15 g/day)	58 047 (37.9)	57 996 (37.9)	51 (27.7)	
High (15> g/day)	59 593 (38.9)	59 493 (38.9)	100 (54.3)	
Education level ^c , N (%)				<.001
Low	21 148 (11.8)	21 105 (11.8)	43 (19.6)	
Medium	70 980 (39.7)	70 886 (39.7)	94 (42.9)	
High	86 504 (48.4)	86 422 (48.4)	82 (37.4)	
Mean income at neighborhood level in 2001, € (Mean ± SD)	19 496.2 ± 5426.5	19 494.2 ± 5428.0	20 791.4 ± 4161.3	<.001
Air pollutants for the year 2010 (Mean \pm SD)				
NO ₂ , μg/m ³	24.9 ± 8.0	24.9 ± 8.0	24.8 ± 7.4	.71
PM _{2.5} , μg/m ³	15.0 ± 3.2	15.0 ± 3.2	14.9 ± 2.9	.45
BC, 10 ⁻⁵ /m	1.5 ± 0.4	1.5 ± 0.4	1.5 ± 0.4	.35
O ₃ , μg/m ³	85.6 ± 9.0	85.6 ± 9.0	85.9 ± 9.2	.38
$PM_{2.5}$ components (Mean ± SD) ^d				
Copper, ng/m ³	3.5 ± 2.6	3.5 ± 2.4	3.5 ± 2.6	.82
Iron, ng/m ³	87.6 ± 46.8	87.9 ± 40.9	87.6 ± 46.8	.85
Zinc, ng/m ³	16.9 ± 11.3	16.1 ± 10.9	17.0 ± 11.3	.10
Sulfur, ng/m ³	659.1 ± 142.1	638.8 ± 126.2	659.2 ± 142.1	.001
Nickel, ng/m ³	0.8 ± 0.7	0.7 ± 0.7	0.8 ± 0.7	.10
Vanadium, ng/m ³	1.4 ± 1.4	1.3 ± 1.7	1.4 ± 1.4	.58
Silicon, ng/m ³	96.2 ± 21.1	97.4 ± 19.1	96.2 ± 21.1	.20
Potassium, ng/m ³	167.2 ± 52.4	168.7 ± 53.8	167.2 ± 52.4	.52

Abbreviations: BC, black carbon; N, number; NO₂, nitrogen dioxide; O₃, ozone; PM_{2.5}, particulate matter with aerodynamic diameters of less than 2.5 µm; SD, standard deviation.

^aThe *t*-test for a continuous variable and chi-square test for a discrete variable to test the difference of a participant characteristic variable between cases and non-cases.

 ${}^{b}n = 153\ 043.$

^cn = 178 632, low: primary school or less, medium: up to secondary school or equivalent, or high: university degree or more.

^dBased on the supervised linear regression exposure model.

3.2 Association between liver cancer incidence and air pollution exposure

We found positive associations of all three main pollutants, except for O₃, with the risk of liver cancer in Model 1, which attenuated after adjustment

for smoking status and employment status in Model 2 (Table 2). In a fully adjusted model, we detected an association between NO₂ and liver cancer incidence with a HR of 1.17 (95% Cl 1.02-1.35) per 10 μ g/m³, while associations with PM2.5 (HR: 1.12 [95% CI 0.92-1.36] per 5 µg/m3) and BC (HR: 1.15 [95% CI 1.00-1.33] per 0.5 \times 10 $^{-5}/\text{m}$) were statistically non-

TABLE 2 Associations between long-term exposure to air pollution and the risk for liver cancer incidence

Air				Two-pollutant mo	del		
pollutant	Model 1 ^a	Model 2 ^b	Model 3 ^c	Model $3 + NO_2$	$\textbf{Model 3} + \textbf{PM}_{2.5}$	Model 3 + BC	Model $3 + O_3$
NO ₂	1.14 (1.00-1.31)	1.12 (0.98-1.29)	1.17 (1.02-1.35)	-	1.19 (1.00-1.43)	1.22 (0.87-1.70) ^d	0.95 (0.78-1.16)
PM _{2.5}	1.10 (0.91-1.33)	1.09 (0.90-1.32)	1.12 (0.92-1.36)	0.96 (0.75-1.23)	-	0.98 (0.76-1.27)	0.88 (0.70-1.11)
BC	1.13 (0.98-1.30)	1.11 (0.97-1.28)	1.15 (1.00-1.33)	0.96 (0.68-1.36) ^d	1.16 (0.96-1.41)	-	0.94 (0.77-1.14)
O ₃	0.69 (0.58-0.84)	0.71 (0.59-0.86)	0.70 (0.58-0.85)	0.67 (0.51-0.88)	0.66 (0.52-0.82)	0.66 (0.51-0.86)	-

Note: Results are presented as hazard ratio and 95% confidence interval [HR (95% CI)] for the following increments: 5 μ g/m³ for PM_{2.5}, 10 μ g/m³ for NO₂, 0.5 10⁻⁵ /m for BC and 10 μ g/m³ for O₃.

Abbreviations: BC, black carbon; CI, confidence interval; HR, hazard ratio; NO₂, nitrogen dioxide; O₃, ozone; PM_{2.5}, particulate matters with aerodynamic diameters of less than 2.5 µm.

^aModel 1 was adjusted for age (time scale), sex (strata), subcohort (strata), and calendar year of baseline.

^bModel 2 was adjusted for age (time scale), sex (strata), subcohort (strata), and calendar year of baseline, smoking status, and employment status.

^cModel 3 was adjusted for age (time scale), sex (strata), subcohort (strata), calendar year of baseline, smoking status, employment status, and mean income at the neighborhood level in 2001.

^dThe results from the model with NO₂ and BC are difficult to interpret because of their high correlation, which reached 0.83.

FIGURE 1 Estimated exposure-response curves for associations between (A) NO_2 , (B) $PM_{2.5}$, (C) BC, and (D) O_3 concentration at the residential addresses of baseline and liver cancer incidence. NO_2 , nitrogen dioxide; $PM_{2.5}$, particulate matter with aerodynamic diameters of less than 2.5 µm; BC, black carbon; O_3 , ozone. Natural splines with 2 degrees of freedom. Black solid lines indicate hazard ratio values, and dashed lines indicate their 95% confidence intervals. Gray vertical dotted lines mean the values used for the subset analyses. Models were adjusted for age (time scale), sex (strata), sub-cohort (strata), calendar year of baseline, smoking status, employment status, and mean income at the neighborhood level in 2001

@uicc

11

significant. The modest attenuation in HRs for NO₂, $PM_{2.5}$, and BC from Model 1 to Model 2 was mainly due to adjustment for smoking, while the inclusion of neighborhood SES in the model modestly increased HRs. However, differences in HRs between Models 1, 2, and 3 were small,

suggesting limited confounding. A statistically significant negative association was observed with O_3 .

In the two pollutant models, the associations for NO_2 remained positive after adjusting for $PM_{2.5}$ or BC (HR: 1.19 [95% Cl 1.00-1.43]

Air pollutants	Subset ^a	Participants, N	Cases, N	Hazard ratio (95% CI) ^b
NO ₂	Full dataset	330 064	512	1.17 (1.02-1.35)
	<40 µg/m ³ (EU standard)	315 023	498	1.20 (1.03-1.40)
	<30 μg/m ³	252 154	392	1.03 (0.83-1.28)
	<20 μg/m ³	90 300	135	1.01 (0.57-1.77)
PM _{2.5}	Full dataset	330 064	512	1.12 (0.92-1.36)
	<25 µg/m ³ (EU standard)	330 024	512	1.12 (0.92-1.36)
	<20 μg/m ³	320 759	505	1.12 (0.92-1.36)
	<15 µg/m ³	153 720	264	1.56 (0.96-2.55)
	<12 µg/m ³	52 349	72	1.02 (0.32-3.26)
	<10 µg/m ³	24 495	24	0.39 (0.06-2.73)
BC	Full dataset	330 064	512	1.15 (1.00-1.33)
	$<3.0 imes10^{-5}/m$	329 305	512	1.17 (1.01-1.35)
	$<2.5 imes10^{-5}/m$	324 258	506	1.16 (0.99-1.35)
	$<2.0 imes10^{-5}/m$	299 519	471	1.16 (0.97-1.38)
	<1.5 $ imes$ 10 ⁻⁵ /m	142 778	206	1.29 (0.91-1.84)
	$<1.0 imes 10^{-5}/m$	34 477	37	0.57 (0.20-1.61)
O ₃	Full dataset	330 064	512	0.70 (0.58-0.85)
	<120 µg/m ³	330 064	512	0.70 (0.58-0.85)
	<100 µg/m ³	324 120	507	0.67 (0.55-0.81)
	<80 μg/m ³	97 767	142	0.65 (0.45-0.95)

 TABLE 3
 Associations between longterm exposure to air pollution and incident liver cancer, below various cutpoints

Abbreviations: BC, black carbon; CI, confidence interval; N, number; NO₂, nitrogen dioxide; O₃, ozone $PM_{2.5}$, particulate matters with aerodynamic diameters of less than 2.5 μ m.

^aParticipants with concentrations above a cut-point were excluded.

^bFrom models adjusting for age (time scale), sex (strata), subcohort (strata), calendar year of baseline, smoking status, employment status, and mean income at the neighborhood level in 2001.

FIGURE 2 Associations between $PM_{2.5}$ components and liver cancer incidence. $PM_{2.5}$, particulate matter with aerodynamic diameters of less than 2.5 µm; NO₂, nitrogen dioxide. Models were adjusted for age (time scale), sex (strata), sub-cohort (strata), calendar year of baseline, smoking status, employment status, and mean income at the neighborhood level in 2001. Associations were expressed as hazard ratios with 95% confidence intervals per interquartile range increase for each of $PM_{2.5}$ components: 3.7 ng/m³ for copper, 55.8 ng/m³ for iron, 10.7 ng/m³ for zinc, 212.2 ng/m³ for sulfur, 0.8 ng/m³ for nickel, 1.7 ng/m³ for vanadium, 24.1 ng/m³ for silicon, and 82.3 ng/m³ for potassium. $PM_{2.5}$ components were estimated by the supervised linear regression method

and 1.22 [95% CI] 0.87-1.70, respectively), while those for $PM_{2.5}$ attenuated to unity after adjusting for NO_2 or BC. The HRs for BC attenuated to unity after adjusting for NO_2 and remained unchanged after adjusting for $PM_{2.5}$ (HR: 1.16 [95% CI: 0.96-1.41]). Furthermore, the associations with NO_2 , $PM_{2.5}$, and BC attenuated to unity after adjustment O_3 but remained unchanged for O_3 , possibly reflecting negative correlations between O_3 and other urban or traffic-related pollutants than NO_2 and BC. Due to the high correlation between BC and NO_2 , as well as NO_2 and O_3 , these two pollutant models should be interpreted with caution.

We observed no deviations from linearity for the associations with PM_{2.5}, NO₂, and BC (Figure 1). Associations with NO₂ and PM_{2.5} persisted below current EU standards of 40 and 25 μ g/m³ for NO₂ and PM_{2.5}, respectively, but leveled off at below 30 μ g/m³ for NO₂ and 12 μ g/m³ for PM_{2.5} (Table 3). The associations with BC were persisted in the subset with the concentration below 1.5 × 10⁻⁵/m.

The associations between NO_2 and liver cancer were statistically significantly stronger in older participants, while no interaction was detected with alcohol intake and smoking status (Table S2).

Observed associations with NO₂, PM_{2.5}, and BC were robust to including time-varying air pollution concentrations and control for time trends (Table S3). Analyses using alternative air pollution exposure estimates from ESCAPE and MAPLE project showed stronger associations with liver cancer, but presented the overlapped confidence intervals (Tables S4 and S5) compared to those with ELAPSE exposure model.

Associations were also robust to additional adjustments for education level or alcohol intake (Table S6) and to the exclusion of one cohort at a time except for association with $PM_{2.5}$, which attenuated to unity after exclusion of VHM&PP (Table S7).

3.3 | Association between liver cancer incidence and PM_{2.5} components exposure

Single pollutant models for $PM_{2.5}$ components estimated by supervised linear regression showed statistically significant HRs for almost all components, with the strongest associations with sulfur and vanadium (Figure 2; Table S8). For $PM_{2.5}$ components estimated with the random forest method, weaker associations were observed than those with the supervised linear regression method for all components, statistically significant only for sulfur and vanadium (Table S8). Associations were mostly robust (slightly attenuated or enhanced) to adjustment for $PM_{2.5}$ and NO_2 (Figure 2).

4 | DISCUSSION

In this pooled analysis of six cohorts from five European countries, we detected associations between long-term exposure to NO₂, PM_{2.5}, and BC and liver cancer incidence. The exposure-response curves were linear for all three pollutants, and the associations persisted below the current EU standards for NO₂ and PM_{2.5}. We found associations with sulfur and vanadium components of PM_{2.5}.

Previous studies on air pollution and liver cancer generally reported associations, though mostly not statistically significant.^{19,21-24} In our study, HR per 10 μ g/m³ increase in NO₂ was 1.17 (95% CI 1.02-1.35), stronger but comparable to that of 1.10 (95% CI 0.93-1.30) from the ESCAPE.²³ The DCH cohort study²² reported HR of 1.66 (95% CI 0.70-3.94) per 100 μ g/m³ increase in NO_x, and the American CPS-II study²⁴ found no association between NO₂ and liver cancer mortality (HR: 1.03 [95% CI 0.93-1.14] per 6.5 ppb $[\sim 12 \ \mu g/m^3]$ increase in NO₂). In the American CPS-II study,²⁴ only primary liver cancer death was included, and since liver cancer is a highly fatal cancer type, results from this study are comparable with those from ours on liver cancer incidence. With re-calculated HRs of each study per the same unit as ours (per 5 μ g/m³ for PM_{2 5}) for the comparison, our findings of the association between PM_{2.5} and liver cancer with a HR of 1.12 (95% CI 0.92-1.36) was weaker than one reported in ESCAPE study (HR: 1.34 [95% CI 0.76-2.35]), comparable to those reported in the US study²¹ with a HR of 1.12 (95% CI 1.03-1.21), and stronger than Pan et al.¹⁹ study with a HR of 1.08 (95% CI 0.98-1.17) and the American CPS-II study²⁴ with a mortality rate ratio of 1.06 (95% CI 0.93-1.18). Our finding of an association between BC and liver cancer incidence with a HR of 1.15 (95% CI 1.00-1.33) per 0.5 \times 10⁻⁵/m showed a more precise estimate compared to the ESCAPE finding with PM_{2.5} absorbance (BC equivalent) with a HR of 1.21 (95% CI 0.68-2.15) per 10^{-5} /m increase. Two pollutant models showed robust associations with NO2 and BC after adjustment of PM2.5, indicating the relevance of traffic emissionrelated pollution for liver cancer. However, we cannot determine whether NO₂ per se or the associated gaseous pollutants and particles from local combustion sources are responsible for the observed association. Finally, we found an inverse association between O₃ and liver cancer, whereas the only other study on O₃ and liver cancer, the American CPS-II study, found no association.²⁴ Despite the varying size and statistical power to detect associations with this rare cancer type, all studies to date on NO₂, PM_{2.5}, and BC, report HRs above 1.

@uicc

ПС

We present novel findings on the association between specific elemental components of PM2.5 and liver cancer. A single previous study²³ on elemental components in PM and liver cancer incidence detected associations with sulfur, silicon, nickel, and iron components of PM_{2.5}. Our association with the sulfur component of PM_{2.5} is consistent with this study²³ and indicates the possible relevance of longrange transported secondary inorganic aerosols from sulfur-containing fossil fuels combustion. Furthermore, the strong association with the vanadium component of PM2.5 is in line with the large populationbased cohort study in Rome⁴¹ showing a strong association between the vanadium component of PM₁₀ and liver cirrhosis, as well as experimental studies^{42,43} showing the association of inhaled vanadium with oxidative stress and cell alteration suggestive for liver regeneration. Still, overall evidence on which components and sources of air pollution are most relevant for liver cancer development is premature and demands attention in future research.

Our main strength is the large sample size obtained by pooling six European cohorts with a long follow-up over 18 years and sufficient

Euice IJC

statistical power to examine the association between air pollution and this rare cancer type. Furthermore, we benefited from the Europeanwide air pollution exposure model which provided comparable air pollution data over the six European cohorts, detailed data on relevant confounders, and liver cancer incidence information from cancer registries with high validity. Limitations include lack of information on occupational exposures such as benzene (one of the hepatotoxic chemicals), alcohol intake, and hepatitis B or C infection status. Additional adjustment for alcohol intake (Table S6) did not affect the main results. Furthermore, we adjusted for SES, a strong determinant of hepatitis B or C infection.^{44,45} Furthermore, the differences in the two air pollution exposure modeling approach used in ESCAPE and ELAPSE projects may explain the difference in risk estimates in the sensitivity analysis (Table S4). Briefly, unlike our main exposure assessment method of Europe-wide hybrid LUR model, the ESCAPE model was the LUR model developed for each study area, using local predictor data. The discrepancy in distributions of air pollution exposure concentrations between two exposure assessment methods can be checked elsewhere.25

In conclusion, our study suggests that long-term exposure to air pollution may increase the risk of liver cancer, even at concentrations below current EU standards, and adds evidence of detrimental health effects of air pollution on cancers other than lung cancer.

ACKNOWLEDGMENTS

This work was supported by funding from Health Effects Institute Research Agreement (#4954-RFA14-3/16-5-3) and by the Novo Nordisk Foundation Challenge Programme (#NNF17OC0027812). The funders had no role in the design of the study; the collection, analysis, and interpretation of the data; the writing of the manuscript; and the decision to submit the manuscript for publication. The research described in this article was conducted under contract to the Health Effects Institute (HEI), an organization jointly funded by the United States Environmental Protection Agency (EPA) (Assistance Award No. R-82811201) and certain motor vehicle and engine manufacturers. The contents of this article do not necessarily reflect the views of HEI, or its sponsors, nor do they necessarily reflect the views and policies of the EPA or motor vehicle and engine manufacturers.

CONFLICT OF INTEREST

Marie-Christine Boutron-Ruault has a potential personal conflict of interest regarding two conferences sponsored by pharmaceutical companies as follows: (a) 03/07/2020-July 30, 2020 MAYOLI-SPIN-DLER: Symposium: Pancreatology in practice in 2020 e-JFHOD 2020 Conference "Why do I see more and more pancreatic cancers?"; (b) 04/12/2020-04/12/2020- GILEAD e-conference Weight gain and HIV infection in 2020. The other authors have no conflicts of interest to disclose.

DATA AVAILABILITY STATEMENT

The exposure maps are available on request from Dr Kees de Hoogh (c.dehoogh@swisstph.ch). The ELAPSE study protocol is available at

http://www.elapseproject.eu/. Further information and a detailed statistical analysis plan is available on reasonable request from the corresponding author (rina.so@sund.ku.dk).

ETHICS STATEMENT

All original cohort studies were approved by the local institutional medical review board and ethics committees in accordance with the national regulations.

ORCID

Rina So D https://orcid.org/0000-0002-2113-3887 Ole Raaschou-Nielsen D https://orcid.org/0000-0002-1223-0909 Marie-Christine Boutron-Ruault D https://orcid.org/0000-0002-5956-5693

Gabriele Nagel b https://orcid.org/0000-0001-6185-8535 Gianluca Severi b https://orcid.org/0000-0001-7157-419X

REFERENCES

- Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. *Lancet*. 2017;389:1907-1918.
- International Agency for Research on Cancer (IARC) Working Group on the Evaluation of Carcinogenic Risks to Humans. Outdoor air pollution. IARC Monogr Eval Carcinog Risks Hum. 2016;109.
- International Agency for Research on Cancer (IARC) Working Group on the Evaluation of Carcinogenic Risks to Humans. Diesel and gasoline engine exhausts and some Nitroarenes. *IARC Monogr Eval Carcinog Risks Hum.* 2014;105.
- Raaschou-Nielsen O, Andersen ZJ, Beelen R, et al. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European study of cohorts for air pollution effects (ESCAPE). *Lancet Oncol.* 2013;14:813-822.
- Turner MC, Andersen ZJ, Baccarelli A, et al. Outdoor air pollution and cancer: an overview of the current evidence and public health recommendations. CA Cancer J Clin 2020;70:460-479.
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424.
- Global Burden of Disease Liver Cancer Collaboration. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and National Level: results from the global burden of disease study 2015. JAMA Oncol. 2017;3:1683-1691.
- Laing S, Wang G, Briazova T, et al. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol. 2010;299:C736-C749.
- Zheng Z, Xu X, Zhang X, et al. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol. 2013;58:148-154.
- Wong CR, Nguyen MH, Lim JK. Hepatocellular carcinoma in patients with non-alcoholic fatty liver disease. World J Gastroenterol. 2016;22: 8294-8303.
- Danielsen PH, Risom L, Wallin H, et al. DNA damage in rats after a single oral exposure to diesel exhaust particles. *Mutat Res.* 2008;637:49-55.
- Dybdahl M, Risom L, Møller P, et al. DNA adduct formation and oxidative stress in colon and liver of big blue rats after dietary exposure to diesel particles. *Carcinogenesis*. 2003;24:1759-1766.
- Conklin DJ. From lung to liver: how does airborne particulate matter trigger NASH and systemic insulin resistance? J Hepatol. 2013;58: 8-10.

- Li D, Li Y, Li G, Zhang Y, Li J, Chen H. Fluorescent reconstitution on deposition of PM2.5 in lung and extrapulmonary organs. *Proc Natl Acad Sci U S A*. 2019;116:2488-2493.
- Kim JW, Park S, Lim CW, Lee K, Kim B. The role of air pollutants in initiating liver disease. *Toxicol Res.* 2014;30:65-70.
- Markevych I, Wolf K, Hampel R, et al. Air pollution and liver enzymes. Epidemiology. 2013;24:934-935.
- Kim K-N, Lee H, Kim JH, Jung K, Lim Y, Hong Y. Physical activity- and alcohol-dependent association between air pollution exposure and elevated liver enzyme levels: an elderly panel study. *J Prev Med Public Health.* 2015;48:151-169.
- Kim HJ, Min JY, Seo YS, Min KB. Association of ambient air pollution with increased liver enzymes in Korean adults. *Int J Environ Res Public Health.* 2019;16:1213.
- Pan WC, Da Wu C, Chen MJ, et al. Fine particle pollution, alanine transaminase, and liver cancer: a Taiwanese prospective cohort study (REVEAL-HBV). J Natl Cancer Inst. 2016;108:1-7.
- 20. Brook RD, Brook JR, Rajagopalan S. Air pollution: the "heart" of the problem. *Curr Hypertens Rep.* 2003;5:32-39.
- VoPham T, Bertrand KA, Tamimi RM, Laden F, Hart JE. Ambient PM2.5 air pollution exposure and hepatocellular carcinoma incidence in the United States. *Cancer Causes Control.* 2018;29: 563-572.
- Raaschou-Nielsen O, Andersen ZJ, Hvidberg M, et al. Air pollution from traffic and cancer incidence: a Danish cohort study. *Environ Health*. 2011;10:67.
- Pedersen M, Andersen ZJ, Stafoggia M, et al. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project. *Environ Res.* 2017;154:226-233.
- 24. Turner MC, Krewski D, Diver WR, et al. Ambient air pollution and cancer mortality in the cancer prevention study II. *Environ Health Perspect*. 2017;125:087013.
- Hvidtfeldt UA, Severi G, Andersen ZJ, et al. Long-term low-level ambient air pollution exposure and risk of lung cancer: a pooled analysis of 7 European cohorts. *Environ Int*. 2021;146:106249.
- Lagergren M, Fratiglioni L, Hallberg IR, et al. A longitudinal study integrating population, care and social services data. The Swedish national study on aging and care (SNAC). Aging Clin Exp Res. 2004;16: 158-168.
- Magnusson PKE, Almqvist C, Rahman I, et al. The Swedish twin registry: establishment of a biobank and other recent developments. *Twin Res Hum Genet*. 2013;16:317-329.
- Wändell PE, Wajngot A, de Faire U, Hellénius ML. Increased prevalence of diabetes among immigrants from non-European countries in 60-year-old men and women in Sweden. *Diabetes Metab.* 2007;33: 30-36.
- Eriksson AK, Ekbom A, Granath F, Hilding A, Efendic S, Östenson CG. Psychological distress and risk of pre-diabetes and type 2 diabetes in a prospective study of swedish middle-aged men and women. *Diabet Med.* 2008;25:834-842.
- Tjønneland A, Olsen A, Boll K, et al. Study design, exposure variables, and socioeconomic determinants of participation in diet, cancer and health: a population-based prospective cohort study of 57,053 men and women in Denmark. *Scand J Public Health*. 2007; 35:432-441.
- 31. Hundrup YA, Simonsen MK, Jørgensen T, Obel EB. Cohort profile: the danish nurse cohort. *Int J Epidemiol*. 2012;41:1241-1247.
- Beulens JWJ, Monninkhof EM, Verschuren WMM, et al. Cohort profile: the EPIC-NL study. Int J Epidemiol. 2010;39:1170-1178.

- Clavel-Chapelon F. Cohort profile: the French E3N cohort study. Int J Epidemiol. 2015;44:801-809.
- Ulmer H, Kelleher CC, Fitz-Simon N, Diem G, Concin H. Secular trends in cardiovascular risk factors: an age-period cohort analysis of 698,954 health examinations in 181,350 Austrian men and women. *J Intern Med.* 2007;261:566-576.
- de Hoogh K, Chen J, Gulliver J, et al. Spatial PM2.5, NO2, O3 and BC models for Western Europe: evaluation of spatiotemporal stability. *Environ Int.* 2018;120:81-92.
- Chen J, de Hoogh K, Gulliver J, et al. Development of Europe-wide models for particle elemental composition using supervised linear regression and random forest. *Environ Sci Technol.* 2020;54:15698-15709.
- Brandt J, Silver JD, Frohn LM, et al. An integrated model study for Europe and North America using the Danish Eulerian hemispheric model with focus on intercontinental transport of air pollution. *Atmos Environ.* 2012;53:156-176.
- Beelen R, Hoek G, Vienneau D, et al. Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe: the ESCAPE project. *Atmos Environ*. 2013;72:10-23.
- Eeftens M, Beelen R, de Hoogh K, et al. Development of land use regression models for PM2.5, PM2.5 absorbance, PM10 and PMcoarse in 20 European study areas; results of the ESCAPE project. *Environ Sci Technol.* 2012;46:11195–11205.
- Brauer M, Brook JR, Christidis T, et al. Mortality-air pollution associations in low-exposure environments (MAPLE): Phase 1. Research Report 203. Boston, MA: Health Effects Institute. 2019.
- Orioli R, Solimini AG, Michelozzi P, Forastiere F, Davoli M, Cesaroni G. A cohort study on long-term exposure to air pollution and incidence of liver cirrhosis. *Environ Epidemiol*. 2020;4:e109.
- 42. Fortoul TI, Rodriguez-Lara V, Gonzalez-Villalva A, et al. Vanadium inhalation in a mouse model for the understanding of air-suspended particle systemic repercussion. *J Biomed Biotechnol.* 2011;2011:1-11.
- Cano-Gutiérrez G, Acevedo-Nava S, Santamaría A, Altamirano-Lozano M, Cano-Rodríguez MC, Fortoul TI. Hepatic megalocytosis due to vanadium inhalation: participation of oxidative stress. *Toxicol Ind Health.* 2012;28:353-360.
- 44. Omland LH, Osler M, Jepsen P, et al. Socioeconomic status in HCV infected patients: risk and prognosis. *Clin Epidemiol.* 2013;5: 163-172.
- Meffre C, Le Strat Y, Delarocque-Astagneau E, et al. Prevalence of hepatitis B and hepatitis C virus infections in France in 2004: social factors are important predictors after adjusting for known risk factors. *J Med Virol*. 2010;82:546-555.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: So R, Chen J, Mehta AJ, et al. Longterm exposure to air pollution and liver cancer incidence in six European cohorts. *Int. J. Cancer*. 2021;1-11. <u>https://doi.org/</u> 10.1002/ijc.33743