509 research outputs found

    Increasing frequencies and changing characteristics of heavy precipitation events threatening infrastructure in Europe under climate change

    Get PDF
    The effect of climate change on potentially infrastructure-damaging heavy precipitation events in Europe is investigated in an ensemble of regional climate simulations conducted at a horizontal resolution of 12 km. Based on legislation and stakeholder interviews the 10-year return period is used as a threshold for the detection of relevant events. A novel technique for the identification of heavy precipitation events is introduced. It records not only event frequency but also event size, duration and severity (a measure taking duration, size and rain amount into account) as these parameters determine the potential consequences of the event. Over most of Europe the frequency of relevant heavy precipitation events is predicted to increase with increasing greenhouse gas concentrations. The number of daily and multi-day events increases at a lower rate than the number of sub-daily events. The event size is predicted to increase in the future over many European regions, especially for sub-daily events. Moreover, the most severe events were detected in the projection period. The predicted changes in frequency, size and intensity of events may increase the risk for infrastructure damages. The climate change simulations do not show changes in event duration

    Seasonal Cycle in German Daily Precipitation Extremes

    Get PDF
    The seasonal cycle of extreme precipitation in Germany is investigated by fitting statistical models to monthly maxima of daily precipitation sums for 2,865 rain gauges. The basis is a non-stationary generalized extreme value (GEV) distribution variation of location and scale parameters. The negative log-likelihood serves as the forecast error for a cross validation to select adequate orders of the harmonic functions for each station. For nearly all gauges considered, the seasonal model is more appropriate to estimate return levels on a monthly scale than a stationary GEV used for individual months. The 100-year return-levels show the influence of cyclones in the western, and convective events in the eastern part of Germany. In addition to resolving the seasonality, we use a simulation study to show that annual return levels can be estimated more precisely from a monthly-resolved seasonal model than from a stationary model based on annual maxima

    A spatial and seasonal climatology of extreme precipitation return-levels: A case study

    Get PDF
    A spatial and seasonal modeling approach for precipitation extremes is introduced and exemplified for the Berlin-Brandenburg region in Germany. Monthly maxima of daily precipitation sums are described with a generalized extreme value distribution (GEV) with spatially and seasonally varying parameters. This allows for a return-level prediction also at ungauged sites. The seasonality is captured with harmonic functions, spatial variations are modeled with Legendre polynomials for longitude, latitude and altitude. Interactions between season and space allow for a spatially varying seasonal cycle. Orders of the harmonic and Legendre series are determined using a step-wise forward regression approach with the Bayesian Information Criterion (BIC) as model selection criterion. The longest 80 series are used to verify the approach in a cross-validation experiment based on the Quantile Skill Score (QSS). The model presented describes the observations at all these stations more accurately than a GEV applied to each month and location separately. These improvements are due to the assumption of smoothly varying GEV parameters in time and space; information from neighboring observations in time and space are used to obtain parameters at a given location. Apart from robustness, this approach allows also a seasonally and spatially varying shape parameter and results are found to be more accurate

    The Tropical Transition of the October 1996 Medicane in the Western Mediterranean Sea: A Warm Seclusion Event

    Get PDF
    The processes leading to the tropical transition of the October 1996 medicane in the western Mediterranean are investigated on the basis of a 50-member ensemble of regional climate model (RCM) simulations. By comparing the composites of transitioning and nontransitioning cyclones it is shown that standard extratropical dynamics are responsible for the cyclogenesis and that the transition results from a warm seclusion process. As the initial thermal asymmetries and vertical tilt of the cyclones are reduced, a warm core forms in the lower troposphere. It is demonstrated that in the transitioning cyclones, the upper-tropospheric warm core is also a result of the seclusion process. Conversely, the warm core remains confined below 600 hPa in the nontransitioning systems. In the baroclinic stage, the transitioning cyclones are characterized by larger vertical wind shear and intensification rates. The resulting stronger low-level circulation in turn is responsible for significantly larger latent and sensible heat fluxes throughout the seclusion process

    Preface: Understanding dynamics and current developments of climate extremes in the Mediterranean region

    Get PDF
    There is an increasing interest of scientists on climate extremes. A progressively larger number of papers dealing with climate issues have been produced in the past 15 yr, and those dealing with extremes have increased at an even faster pace. The number of papers on extremes in the Mediterranean follows this overall trend and confirms how extremes are perceived to be important by the scientific community and by society. This special issue (which is mainly related to activities of the MedCLIVAR (Mediterranean CLImate VARiability and Predictability) and CIRCE (Climate Change and Impact Research: the Mediterranean Environment) projects), contains thirteen papers that are representative of current research on extremes in the Mediterranean region. Five have precipitation as its main target, four temperature (one paper addresses both variables), and two droughts; the remaining papers consider sea level, winds and impacts on society. Results are quite clear concerning climate evolution toward progressively hotter temperature extremes, but more controversial for precipitation, though in the published literature there are indications for a future increasing intensity of hydrological extremes (intense precipitation events and droughts). Scenario simulations suggest an attenuation of extreme storms, winds, waves and surges, but more results are requested for confirming this future change

    An analysis of uncertainties and skill in forecasts of winter storm losses

    Get PDF
    This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences from a global medium-range ensemble prediction system (EPS). Predictions of storm damage occurrences are subject to large uncertainty due to meteorological forecast uncertainty (typically addressed by means of ensemble predictions) and uncertainties in modelling weather impacts. The latter uncertainty arises from the fact that local vulnerabilities are not known in sufficient detail to allow for a deterministic prediction of damages, even if the forecasted gust wind speed contains no uncertainty. Thus, to estimate the damage model uncertainty, a statistical model based on logistic regression analysis is employed, relating meteorological analyses to historical damage records. A quantification of the two individual contributions (meteorological and damage model uncertainty) to the total forecast uncertainty is achieved by neglecting individual uncertainty sources and analysing resulting predictions. Results show an increase in forecast skill measured by means of a reduced Brier score if both meteorological and damage model uncertainties are taken into account. It is demonstrated that skilful predictions on district level (dividing the area of Germany into 439 administrative districts) are possible on lead times of several days. Skill is increased through the application of a proper ensemble calibration method, extending the range of lead times for which skilful damage predictions can be made

    Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM

    No full text
    International audienceA simple storm loss model is applied to an ensemble of ECHAM5/MPI-OM1 GCM simulations in order to estimate changes of insured loss potentials over Europe in the 21st century. Losses are computed based on the daily maximum wind speed for each grid point. The calibration of the loss model is performed using wind data from the ERA40-Reanalysis and German loss data. The obtained annual losses for the present climate conditions (20C, three realisations) reproduce the statistical features of the historical insurance loss data for Germany. The climate change experiments correspond to the SRES-Scenarios A1B and A2, and for each of them three realisations are considered. On average, insured loss potentials increase for all analysed European regions at the end of the 21st century. Changes are largest for Germany and France, and lowest for Portugal/Spain. Additionally, the spread between the single realisations is large, ranging e.g. for Germany from ?4% to +43% in terms of mean annual loss. Moreover, almost all simulations show an increasing interannual variability of storm damage. This assessment is even more pronounced if no adaptation of building structure to climate change is considered. The increased loss potentials are linked with enhanced values for the high percentiles of surface wind maxima over Western and Central Europe, which in turn are associated with an enhanced number and increased intensity of extreme cyclones over the British Isles and the North Sea
    • …
    corecore