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ABSTRACT

In order to identify the distinctive characteristics of the meteorological en-

vironment supporting the tropical transition of the October 1996 medicane in

the western Mediterranean, its spatial and temporal evolution is investigated

on the basis of a 50-member ensemble of reanalyses-driven RCM atmospheric

simulations. As the cyclones undergo a warm seclusion-like process, the ini-

tial thermal asymmetries and vertical tilt are reduced while a warm core builds

upward from the lower troposphere. A comparison of the composite environ-

ments of transitioning and non-transitioning storms reveals that the former

feature enhanced convection and higher mid-to-low tropospheric relative hu-

midity, resulting in a stronger diabatic heat release aloft, along with increased

upper-level wind divergence. At the time of transition, vertical wind shear

is not significantly different, as it is reduced in both composites below the

thresholds typically found for tropical cyclogeneses. Upper-level wind diver-

gence and wind shear are positively correlated, hence the additional forcing

on convection due to stronger divergence could partially counteract the detri-

mental effects of larger shear. In the transitioning cyclones, surface sensible

and latent heat fluxes become significantly larger only in proximity of the tran-

sition. Finally, the upper-tropospheric warm core strength exhibits a strong,

negative linear correlation with wind shear. Moderately positive correlation

coefficients are instead found for latent and sensible heat fluxes while upper-

level divergence and mid-to-low tropospheric relative humidity show small

and negative correlations.
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1. Introduction33

Over the last years there has been a remarkable advance in our understanding of both mid-34

latitude and tropical cyclones: used to be grouped in separate classes, they are now rather en-35

visioned at each end of a continuum spectrum where, based on its location and meteorological36

environment, a cyclone can acquire distinctive characteristics of each class (Hart 2003). For ex-37

ample, during extratropical transitions tropical cyclones (TCs) usually move to higher latitudes38

and undergo a series of structural changes resulting in the acquisition of features typical of baro-39

clinic systems (Jones et al. 2003). Conversely, a tropical transition refers to the formation of a TC40

from a well-defined baroclinic precursor or remnant baroclinic structure (Bosart and Bartlo 1991;41

Davis and Bosart 2003, 2004). McTaggart-Cowan et al. (2012) estimated that baroclinic influences42

account for nearly 30 % of the global tropical cyclogeneses and there is increasing evidence that43

the tropical transition paradigm can be applied to understand the genesis of medicanes or tropical-44

like cyclones in the Mediterranean Basin as well (McTaggart-Cowan et al. 2009a,b; Chaboureau45

et al. 2012).46

Although forming in a highly cyclogenetic area (Trigo et al. 1999), only 1.6 ± 1.3 medicanes47

are detected on average every year (Cavicchia et al. 2014). The synoptic setting associated with48

their genesis is often characterized by an upper-level feature (Claud et al. 2010), either a fully49

isolated cut-off (Reale and Atlas 2001) or an elongated trough (Pantillon et al. 2012), responsible50

for the destabilization of the atmospheric column (Emanuel 2005; Fita et al. 2007; Cavicchia et al.51

2014) and the quasi-geostrophic forcing on vertical motions (Chaboureau et al. 2012). In the lower52

troposphere, instead, enhanced vorticity is present (Cavicchia et al. 2014) along with consistent53

heat fluxes from the sea surface (Pytharoulis et al. 2000; Reale and Atlas 2001).54
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Through observations and numerical modeling, several studies have investigated the relevance55

of different processes in the evolution of medicanes. Surface heat fluxes appear to be involved56

not only in maintaining the systems (Fita et al. 2007; Davolio et al. 2009; Lagouvardos et al.57

1999; Pytharoulis et al. 2000; Moscatello et al. 2008b) but also in promoting the scale reduction58

of the vortex (Reed et al. 2001) and in modifying the stability of the boundary layer (Moscatello59

et al. 2008a). Diabatic effects, such as latent heat release by condensation, control medicanes’60

intensification (Pytharoulis et al. 2000) as the strongest convective activity is found before the61

storms’ maturity (Chaboureau et al. 2012; Miglietta et al. 2013). In terms of the dynamics, the62

interplay between a coherent tropopause disturbance, a diabatically-generated potential vorticity63

(PV) anomaly and an orographically-generated PV banner was identified by McTaggart-Cowan64

et al. (2009a,b) as the key mechanism in the cyclogenesis of a medicane in the Gulf of Genoa.65

Chaboureau et al. (2012) pointed instead to the enhancement in convection due to the surface66

cyclone crossing an upper-level jet as a major contributor to the tropical transition of the September67

2006 medicane.68

Tous and Romero (2011, 2013) used reanalysis data to investigate the meteorological environ-69

ment associated with twelve medicanes by comparing it against that of the bulk of the Mediter-70

ranean cyclones. Among the parameters examined, only heat fluxes, expressed as a diabatic con-71

tribution to surface equivalent potential temperature, and an empirically-defined genesis index72

proved to be moderately distinctive. An axisymmetric, cloud-resolving model was instead em-73

ployed by Fita et al. (2007) to show that medicanes are highly sensitive to the relative humidity74

(RH) profile while less sensitive to the sea surface temperature (SST), as also suggested by Tous75

et al. (2013), even though a lower limit of 15◦ C seems necessary for their genesis (Tous and76

Romero 2013). The geographical and seasonal frequency of medicane genesis is compatible to77

that of the combination of low wind shear, large thermal contrast between the upper troposphere78
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and the sea surface, high column-integrated relative humidity and large low-level vorticity, accord-79

ing to Cavicchia et al. (2014).80

Our present study attempts at characterizing the meteorological environment associated with81

the tropical transition of medicanes by focusing on the October 1996 event. In order to do so, an82

ensemble of model realizations is obtained through a dynamical downscaling of the corresponding,83

reanalysis-based, synoptic scale environment. This approach differs from previous studies in that84

it is based on the spatio-temporal comparison of transitioning and non-transitioning ensemble85

members. Moreover, the use of a full-physics, non-hydrostatic atmospheric model should allow86

a better representation of any baroclinic influence that an axisymmetric model initialized with a87

homogenous atmosphere can not account for, as suggested by Fita et al. (2007). The analysis88

focuses on different parameters that have been often investigated in relation to extratropical and89

tropical cyclones, namely vertical wind shear, upper-tropospheric wind divergence, surface heat90

fluxes and relative humidity. The results are discussed with respect to similar studies on medicanes,91

TCs as well as on the baroclinically-induced pathway (i.e. tropical transition) to TC formation.92

The remainder of the paper is organized as follows: section 2 provides the case overview, section93

3 describes the model set up and the methodology, in section 4 the results are presented. The94

discussion and concluding remarks are included in section 5.95

2. Case description96

The October 1996 medicane is among the twelve cases detected by Tous and Romero (2011) and97

was previously investigated by Reale and Atlas (2001) and Cavicchia and von Storch (2012). Its98

precursor cyclone originated off the Algerian coast in the afternoon of 6 October and was initially99

located under an upper level, cut-off low, associated with a moderately strong jet stream on its100

southern edge (Reale and Atlas 2001), that moved from southern France to the Catalan Coast. It101
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later progressed northward between Sardinia and the Balearic Islands (Fig.1a) and by 1200 UTC102

7 October it featured a 999 hPa sea-level pressure minimum, an incipient low-level warm core103

and a well-defined, eye-like structure (Reale and Atlas, 2001). Subsequently, the system made104

its first landfall over southern Sardinia (Cavicchia and von Storch 2012), temporarily weakening105

and partially losing its tropical-like structure (Fig.1b). Soon after 00 UTC 8 October, the cyclone106

moved over the Tyrrhenian Sea regaining strength and the eye-like structure (Fig.1c). According to107

Reale and Atlas (2001) and Cavicchia and von Storch (2012) a ship located around 100 km off the108

center recorded winds up to 25 m/s. On 9 October, the system moved south-eastward with wind109

speeds reaching 22.5 m/s on the island of Ustica. Having traveled almost 3000 km (Cavicchia and110

von Storch 2012), the medicane dissipated after making landfall over Calabria on 10 October 1996111

(Fig.1d). The 0.6 µm visible channel imagery in Fig.1 provides also indications of the baroclinic-112

like characters of its precursor cyclone (Fig.1a), such as remnant frontal structures, as well as113

evidence of the axisymmetrization of the cloud pattern around the eye and the scale reduction of114

the vortex during tropical transition (Fig.1b and Fig.1c).115

3. Data and methodology116

a. Experimental set-up117

The numerical simulations are performed with the full physics, non-hydrostatic, limited area118

model COSMO-CLM (Rockel et al. 2008) version cosmo4.8− clm19 in a double, one-way119

nested configuration. A 288x192 points, 0.0625◦resolution grid is nested in a 257x271 points,120

0.165◦resolution grid. In both settings, 40 vertical levels are used and lateral boundary condi-121

tions are updated every 6 hours. For the inner grid the chosen set-up consists of: the extended122

Kessler−type mycrophysics scheme, including cloud water and cloud ice for grid-scale precipita-123
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tion, the Ritter and Geleyen radiation scheme and the Tiedtke convection parametrization scheme124

(Tiedtke 1989). The horizontal diffusion parameters are modified according to Akhtar et al. (2014).125

Two sets of simulations are performed with initial and boundary conditions provided by the 1.125◦126

resolution version of the ERA−40 reanalysis (Uppala et al. 2005) and the 0.7◦ resolution ERA In-127

terim reanalysis (Dee et al. 2011) respectively.128

b. Ensemble generation129

Indications exist that forecasts of medicanes are highly sensitive to the initial conditions (Davolio130

et al. 2009; Chaboureau et al. 2012), therefore a simple technique, referred to as domain shifting131

(DS), is here employed to generate a set of initial conditions for the ensemble of model simulations.132

DS consists of performing the numerical integrations over domains that cover a common area of133

interest but are shifted with respect to each other. A simplified representation of the modeling134

scheme is provided in Fig.2. The procedure is applied to the first downscaling step of reanalysis135

as follows:136

• A central domain (ORIG - centered on 9.75◦W, 49.68◦N) is located (black box in Fig.2).137

• Select the shifting distances: 68 km, 136 km and 184 km.138

• Shift the central domain by each distance in cardinal and primary inter-cardinal directions139

(e.g. North and North-West), obtaining a total of 25 different domains.140

• Run the atmospheric simulation for each of the domains.141

Using two reanalyses as driving data results in 50 simulations, each of them further down-142

scaled to 0.0625◦ over a common nested domain covering the western and central Mediterranean143

(magenta box in Fig.2). The simulations are initialized at 00 UTC 1 October 1996 for the first144

downscaling and at 00 UTC 4 October 1996 for the second one.145
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c. Cyclone Phase Space146

The tropical transition of the simulated cyclones is are assessed by means of the Hart’s cyclone147

phase space (Hart 2003): a three dimensional diagnostic methodology that has already been ap-148

plied to the study of medicanes (see Davolio et al. 2009; Cavicchia and von Storch 2012; Miglietta149

et al. 2013). The parameters that define the phase space are:150

• The thermal symmetry in the lower troposphere (B): the difference in storm-relative 600-900151

hPa thickness between left and right semicircles with respect to the current cyclone’s motion.152

• The lower tropospheric thermal wind (-VL
T ): the vertical derivative of the cyclone’s height153

perturbation between 900 and 600 hPa.154

• The upper tropospheric thermal wind (-VU
T ): the vertical derivative of the cyclone’s height155

perturbation between 600 and 300 hPa.156

Due to the smaller scale of medicanes, these are calculated within a 300 km radius around the157

SLP minimum, instead of the 500 km one used for TCs by Hart (2003). Nevertheless, consistent158

results are obtained for radii ranging between 150 and 350 km. In our application, a cyclone is159

said to be a medicane when it completes the tropical transition, meeting simultaneously all of160

three requirements imposed by Hart (2003): B < 10 m, -VL
T >0 and -VU

T >0. The first hourly161

time step in which all the conditions are met is termed Tropical Transition time (TT). For the non-162

transitioning cyclones, the TT time is taken to be the time of maximum upper-tropospheric warm163

core strength (-VU
T ) provided that the other two conditions are met.164

d. Cyclone Composites165

Previous studies concluded that horizontal resolutions in the order of 7 km are appropriate for166

correctly simulating sub-synoptic scale cyclones such as medicanes (Tous and Romero 2013;167
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Miglietta et al. 2013). Therefore, the analysis is entirely based on the results of the 0.0625◦168

resolution simulations as obtained from the second downscaling. Two methods are employed to169

minimize the effect of the vortex’s symmetric circulation on the values of wind shear: for the170

spatial plots, it is calculated after having low-pass filtered the u and v fields via convolution with171

a 21x21 gridpoint filter; for the time series, it is calculated as the difference in the composite172

area-averaged wind vectors between 300 and 850 hPa, similarly to the method of Paterson et al.173

(2005)174

Cyclone compositing has been frequently applied to the study of extratropical and tropical cy-175

clones (see Frank 1977; Bracken and Bosart 2000; Bengtsson et al. 2007; Catto et al. 2010) in order176

to retain only those features that appear consistently in a given dataset. It is here implemented as177

follows: each simulated cyclone is tracked using sea-level pressure (SLP) fields, requiring the as-178

sociated minimum to be deeper than 1013 hPa. Subsequently, cyclone-centered hourly fields are179

composited over a 280x280 km regular grid. The 0-hour offset is placed on the TT time and com-180

posites are obtained in the time range from TT-12h to TT+12h. Given the similarity of the storm181

tracks in the ensemble and the absence of relevant grid stretching due to the limited size of the182

domain, the compositing procedure does not include any additional spatial transformation. Two183

composites are built: MED for the medicanes and NONMED for the non-transitioning cyclones.184

The statistical significance of the composite difference (MED-NONMED), standardized by the185

50-member standard deviation, is tested at the 95% confidence interval by means of a bootstrap-186

ping by resampling approach as in (Rios-Berrios et al. 2015), by randomly replacing composite187

members. Using this method, the significance is tested both for individual grid point values and188

area-averaged quantities without assuming a specific probability distribution for the variables in189

the ensemble.190
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4. Results191

a. Evolution of the composites192

According to the phase space metrics, all the simulated 50 cyclones attain a state characterized193

by negligible thermal asymmetry (B < 10 m) and a warm core in the lower troposphere (-VL
T >0),194

as seen in Fig.3a. Among these, only 27 cyclones exhibit a warm core also in the upper troposphere195

(-VU
T >0 - red markers in Fig.3b) and are identified as medicanes. For the remaining 23 non-196

transitioning cyclones, -VU
T never exceeds 0 (blue markers in Fig.3b). In both composites, the197

warm core formation appears to follow a bottom-up evolution: as the SLP minimum deepens198

(solid lines in Fig.3c) a low-level warm anomaly develops, indicated by the positive -VL
T values199

(solid lines with circular markers) in Fig.3c. As shown in the 900 hPa potential temperature fields200

in Fig.4a, this thermal anomaly is located at the end of a bent-back warm front. This development201

is reminiscent of warm seclusions and the stage 3 of the Shapiro and Keyser (1990) marine cyclone202

model.203

The baroclinic origin of the cyclones is clearly visible in the longitudinal cross sections through204

the composites’ centers (Fig.4b): both in MED and NONMED an upper level, geopotential height205

anomaly (calculated as the difference from the zonal mean) encroaches on a near-surface hori-206

zontal equivalent potential temperature gradient. In such a structure, the advection of cyclonic207

vorticity by the thermal wind would promote upward vertical motions. During the seclusion, the208

low-level asymmetry and the vertical tilt are reduced as the upper-level anomaly weakens. A sim-209

ilar pathway has already been documented in several tropical transitions of Atlantic hurricanes210

(Hulme and Martin 2006, 2009a,b).211

Although the composites follow a very similar evolution, there exist remarkable differences in212

the associated convective activity, both in terms of intensity and location. At 500 hPa, the MED213
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composite has stronger convection with peaks closer to the composite center (Fig.5a). Larger, pos-214

itive vertical velocities are present in the transitioning cyclones throughout the troposphere, with215

the largest difference located between 400-600 hPa (Fig.5b) over much of the period preceding216

the TT. Such stronger convection contributes to a more intense warming in the mid-troposphere:217

significantly larger latent heat release is in fact present between 400 and 700 hPa (Fig.5b). This218

is consistent with the greater SLP fall seen in the MED composite and the subsequent formation219

of the 300-600 hPa warm core, lagging approximately 6 hours behind the lower tropospheric one220

(Fig.3c).221

b. Shear and divergence222

Vertical wind shear is believed to have detrimental effects on TCs (McBride and Zehr 1981;223

DeMaria et al. 2001; Gallina and Velden 2002) as well as on medicanes (Reale and Atlas 2001;224

Tous and Romero 2013). The time series of 300-850 hPa wind shear for MED and NONMED are225

shown in Fig.6a. During tropical transitions a marked shear reduction is generally observed (Davis226

and Bosart 2004; Hulme and Martin 2009a,b). In both composites the shear decreases from values227

exceeding 15 m/s to less than 6 m/s at the TT, however in the transitioning cyclones it reamins228

significantly stronger until TT-3 hours. As shown in Fig.7a, the largest difference, standardized229

by the ensemble standard deviation, exceeds 1 σ and is located to the north-west of the composite230

center. Conversely from previous studies (Davis and Bosart 2003; Kaplan et al. 2010) even in the231

non-transitioning storms the shear weakens on average below 10 m/s. In the MED composite,232

however, this reduction is more pronounced. Hulme and Martin (2009a,b) emphasized the role of233

diabatic processes in reducing the vertical wind shear through a redistribution of PV.234

Upper-level wind divergence can provide the forcing necessary to support convection during a235

tropical transition (Chaboureau et al. 2012): for a 5-hour period extending for TT-4 to TT+1, the236
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transitioning cyclones are characterized on average by a significantly larger divergence at 300 hPa237

(Fig.6b). As shown in Fig.7b, there is a well-defined divergence maximum to the north-west of238

the cyclones center, whose amplitude exceeds 6x10−5 1/s, in agreement with the NCEP analyses239

presented by Reale and Atlas (2001). Associated with it, an extensive area of significanty larger240

divergence characterizes the MED composite as soon as TT-8 hours and persists throughout the241

transition process.242

The scatter plot in Fig.6c indicates that in both composites tropospheric wind shear and upper-243

level divergence are positively correlated: a linear fit between their respective area-averaged,244

hourly values for each composite member yields very similar positive slopes (1.45x10−5 and245

1.51x10−5) and correlation coefficients of 0.37 and 0.4 respectively. Such compensation could246

partially counteract the detrimental effects of the enhanced wind shear observed in the MED com-247

posite by providing an additional forcing on convection, as suggested by Hendricks et al. (2010)248

for rapidly intensifying TCs.249

c. Heat Fluxes and Humidity250

Medicanes obtain their energy from the thermodynamical disequilibrium between the atmo-251

sphere and the sea surface (Emanuel 2005; Fita et al. 2007; Tous and Romero 2013): heat fluxes252

from the sea can support their intensification through the so-called Wind Induced Surface Heat Ex-253

change (WISHE) mechanism (Emanuel 1986; Rotunno and Emanuel 1987), according to Emanuel254

(2005) and Fita et al. (2007). As shown by the time series in Fig.8a,b, latent and sensible heat255

fluxes become significantly stronger in the MED composite only in proximity of the transition,256

with anomalies that at TT+6 hours exceed 60 W/m2 and 30 W/m2 respectively. This result ques-257

tions a causal relationship between heat fluxes and the tropical transition. Conversely, the evidence258

seems to support latent and sensible heat fluxes as factors contributing to medicanes’ intensifica-259
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tion after the storms reached a sufficient strength and axisymmetric structure, as Davis and Bosart260

(2003) indicated in the case of baroclinically-induced TCs.261

Relative humidity has often been investigated in relation to tropical cyclogeneses (see Hendricks262

et al. 2010; Wu et al. 2012; Brown and Hakim 2015). Different measures of RH have been used263

to assess its role in medicanes formation: Tous and Romero (2013) focused on its value at the264

600 hPa level while Fita et al. (2007) and Cavicchia et al. (2014) considered vertically-integrated265

RH. Nevertheless, medicanes appear to be associated with a very humid atmospheric column.266

Fig.5b shows that the MED composite is more humid across a vast part of the troposphere, with267

the greatest differences with respect to NONMED located in between 600 and 850 hPa. The time268

series in Fig.9a shows that the 600-850 hPa mean relative humidity presents a significantly positive269

anomaly across the entire 25-hour period, with peaks exceeding 5%. Spatially, the anomaly covers270

a large portion of the composite area and wraps cyclonically around the center (Fig.9b). It is271

characterized by azimuthal asymmetries throughout the transition process and by local maxima272

exceeding 1.5/2 σ .273

d. Influence on warm core formation274

So far, the analysis focused on describing the differences between the average meteorological275

environments of transitioning and non-transitioning storms. To better understand how these might276

influence the genesis of medicanes, i.e. the formation of a full tropospheric warm core, the rela-277

tionship between each of the examined variables and the upper-tropospheric warm core metric of278

the cyclone phase space (-VU
T ) is examined. The scatter plots of hourly, area-averaged values for279

each composite member reveal a strong, negative linear correlation between the tropospheric wind280

shear and the warm core strength, with Pearson correlation coefficients of -0.88 and -0.7 for MED281

and NONMED respectively (Fig.10a) . Negative but smaller correlation coefficients are also found282
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for 300 hPa wind divergence (Fig.10b). There appears to be instead a moderately strong positive283

correlation between latent heat flux and warm core strength, with a coefficients equal to 0.58 for284

MED and 0.43 for NONMED (Fig.10c), even though medicanes were not characterized by larger285

heat fluxes before TT. Very similar findings hold also for the sensible heat flux (not shown). Con-286

versely, despite the MED composite time series exhibiting a consistently significant and positive287

anomaly, the correlation of mid-tropospheric relative humidity and warm-core strength is weak288

and negative (Fig.10d).289

5. Discussion290

This study aims at characterizing the meteorological environment supporting the tropical transi-291

tion of the October 1996 medicane by comparing the composite environments of 27 transitioning292

and 23 non-transitioning cyclones obtained from a 50-member ensemble of reanalyses driven,293

COSMO-CLM simulations.294

Non-negligible baroclinicity, indicated by large vertical wind shear, characterizes the early295

stages of the simulated cyclones. As these undergo a warm seclusion-like process, the initial296

thermal asymmetries and vertical tilt are reduced while a warm core builds upward from the lower297

troposphere in a manner consistent with the baroclinically-induced pathway to tropical cyclogen-298

esis (Bosart and Bartlo 1991; Davis and Bosart 2003)299

In the transitioning cyclones, significantly stronger convection is present in the mid-upper tropo-300

sphere, resulting in larger release of latent heat by condensation. At the transition, the tropospheric301

wind shear declines in both composites below 10 m/s, in agreement with the empirical thresholds302

calculated for TCs of 15 m/s (DeMaria et al. 2001) and 10-12 m/s (Gallina and Velden 2002), and303

within the 4-29 m/s range calculated for medicanes by Tous et al. (2013). Although the medicanes304

feature on average a more pronounced shear reduction, even in the non-transitioning cyclones the305
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shear weakens to favorable values. This differs from the findings of previous studies on tropical306

transitions (Davis and Bosart 2003) and on the intensification of TCs (Hendricks et al. 2010; Ka-307

plan et al. 2010). Just like baroclinically-induced TCs (Davis and Bosart 2003) and a subset of all308

North Atlantic TCs (Bracken and Bosart 2000), medicanes seem to benefit from an initial moder-309

ate degree of shear. A significant, positive difference over a 5-period preceding TT suggests that310

upper-level wind divergence can be relevant in supporting convection during the tropical transi-311

tion, as also proposed by Chaboureau et al. (2012). Furthermore, the correlation analysis indicates312

that a compensation exists between wind shear and divergence, as the detrimental effects of high313

wind shear might be counteracted by an increased forcing on vertical motions.314

Enhanced surface latent and sensible heat fluxes characterize only the post-transition stage, con-315

sistent with the WISHE mechanism sustaining the intensification of medicanes during their mature316

stage (Emanuel 2005; Fita et al. 2007). The layer between 600 and 850 hPa features significantly317

higher relative humidity: somewhat in contrast with previous studies (Tous and Romero 2011;318

Tous et al. 2013), enhanced mid-tropospheric relative humidity emerges here as a distinctive fea-319

ture of the transitioning cyclones. Higher mid-tropospheric relative humidity, exhibiting azimuthal320

asymmetries, has been also found in the near-environment of rapidly intensifying hurricanes (Hen-321

dricks et al. 2010; Wu et al. 2012; Rios-Berrios et al. 2015). As suggested by Rios-Berrios et al.322

(2015), a moister mid-troposphere would better support sustained convection, preventing dry air323

entrainment as well as reducing the stabilizing effects of convective downdrafts.324

Within the limitations posed by a single case study, these findings provide a more detailed325

characterization of the meteorological environment in which tropical transitions can occur in the326

Mediterranean Basin. Further investigations are required in order to assess the causal relationships327

between the observed differences and the transition process. Nevertheless, the results presented in328
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this study might contribute to the current understanding of medicanes and also prove relevant for329

the general community dealing with baroclinically-induced tropical cyclogeneses.330
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TABLE 1. Summary of the area-averaged parameters analyzed for the MED (left) and NONMED (right)

composites at TT-12, TT and their average over the 12 hours preceeding the transition.

494

495

TT-12h TT 〈T T 〉−12
0

MED | NONMED MED | NONMED MED | NONMED

〈600−850〉 hPa RH (%) 85.5 | 80.3 81.5 | 76.9 84.4 | 79.4

300-850 hPa Shear(m/s) 24.5 | 17.7 8.5 | 6.9 14.7 | 11.0

300 hPa Divergence (x10−5 1/s) 2.4 | 1.7 1.3 | 0.4 2.3 | 1.5

Latent Heat Flux (W/m2) 144.9 | 131.3 278.9 | 233.9 189.9 | 184.7

Sensible Heat Flux (W/m2) 42.8 | 38.4 112.4 | 91.9 66.7 | 67.7
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FIG. 1. METEOSAT-5 0.6 µm visible channel imagery of the October 1996 medicane: at a) 1000 UTC,

October 7th; b) 1030 UTC, October 8th; c) 1030 UTC, October 9th; d) 1030 UTC, October 10th.
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FIG. 2. a) Elevation map and simplified example of the domain shifting set up used on the first downscaling:

the shifted domains are ORIG (black), West (red), North-West (blue), South (yellow). In each domain a second,

nested grid (magenta) is employed for the second downscaling.
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FIG. 3. Cyclone-phase space diagrams at TT time: (a) -VL
T vs. B, (b) -VL

T vs. -VU
T . Each point represents a

composite member. (c) Composite time series of SLP minimum (solid lines - values refer to left-hand axis) and

phase space warm core metrics (dashed line with circular markers for -VL
T , with cross markers for -VU

T - values

refer to right-hand axis).
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FIG. 4. (a) 900 hPa potential tempetature (colors) and SLP (contours every hPa) for NONMED (top) and MED

(bottom) at -12h, -6h, +0h. (b) Longitudinal cross sections through the composite centre of equivalent potential

temperature (colors) and geopotential height anomaly (contoured every 0.5 gpdm - dashed when negative) at
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FIG. 5. (a) 500 hPa vertical velocity (colors) and SLP (contours every hPa) for NONMED (top) and MED

(bottom) at -12h, -6h, +0h. (b): Vertical profiles of area-averaged relative humidity (left), vertical velocity

(middle) and diabatic heating rate (right) differences (MED-NONMED) at -12h, -9h, -6h, -3h, TT=0h, +3h

offsets. Vertical velocities and diabatic heating rate are averaged within 70 km from the composite centre.

Circular markers indicate where the difference is significant at the 95% condifence interval.
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FIG. 7. Ensemble mean (contours) and normalized composite difference (colors) at -12h, -8h, -4h, -2h, 0,

+2h. (a) 300-850 hPa wind shear; (b) 300 hPa wind divergence (contours every 1x10−51/s). Grey dots indicate

where the difference is statistically significant at the 95% confidence interval.
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FIG. 9. (a) Composite time series for MED and NONMED of area-averaged 600-850 hPa mean relative

humidity and corresponding differences (black line - refer to right hand axis). Circular markers indicate a

statistically significant difference at the 95% confidence level. Shading denotes ±σ . (b) Ensemble mean 600-

850 hPa mean relative humidity (contoured every 4%) and normalized composite difference (colors) at -12h,

-8h, -4h, -2h, 0, +2h. Grey dots indicate where the difference is statistically significant at the 95% confidence

interval.
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FIG. 10. Scatter plots of area averaged 300-850 hPa wind shear (a), 300 hPa divergence (b), latent heat flux

(c), 600-850 hPa mean relative humidity (d) against the cyclone phase space upper-tropospheric warm core

metric -VU
T . Each set of points is linearly fitted, the corresponding Pearson correlation coefficients are provided

in the legend boxes.
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