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Abstract
The seasonal cycle of extreme precipitation in Germany is investigated by fitting statistical models to monthly
maxima of daily precipitation sums for 2,865 rain gauges. The basis is a non-stationary generalized extreme
value (GEV) distribution variation of location and scale parameters. The negative log-likelihood serves as the
forecast error for a cross validation to select adequate orders of the harmonic functions for each station. For
nearly all gauges considered, the seasonal model is more appropriate to estimate return levels on a monthly
scale than a stationary GEV used for individual months. The 100-year return-levels show the influence of
cyclones in the western, and convective events in the eastern part of Germany. In addition to resolving the
seasonality, we use a simulation study to show that annual return levels can be estimated more precisely from
a monthly-resolved seasonal model than from a stationary model based on annual maxima.

Keywords: Extreme value theory, Generalized Extreme Value (GEV) distribution, seasonal variations,
extreme precipitation, rain gauge data, climate

1 Introduction

Extreme meteorological events such as heavy precipita-
tion, strong winter storms or heat waves carry the po-
tential for considerable damage and thus affect society
(Intergovernmental Panel on Climate Change.
Working Group II, 2014, and references therein).
Threats due to precipitation can be either direct in the
form of hail, freezing rain or flash floods, or indirect due
to river flooding. Particularly for the latter, the seasonal
timing of extreme precipitation is relevant; the risk of
flooding is higher if the extreme precipitation coincides
with already-high water levels due to, e.g., snow melt
(Schindler et al., 2012a,b; Vormoor et al., 2015). Ad-
ditionally, the seasonal cycle of extreme precipitation is
important for the agricultural sector as it has an impact
on crop yields: particularly during the early stages of
plant reproduction, the crop is highly vulnerable to dam-
age (Parry et al., 2005; Rosenzweig et al., 2001). Also
for the replenishment of reservoirs in specific season, the
monthly consideration of extreme precipitation might be
interesting.

A widely accepted concept to describe the probabil-
ity of occurrence, as well as the magnitude, of extreme
events is extreme value statistics (EVS) (Beirlant
et al., 2004; Coles, 2001; Embrechts et al., 1997).
Countless applications of EVS have been applied in hy-
drology and climatology (e.g., Lerma et al., 2015; Arns
et al., 2015; Brown and Katz, 1995; Coles and Tawn,
1996; Katz et al., 2002; Naveau et al., 2005; Cid et al.,
2016; Friederichs, 2010), to name but a few. One way
towards an assessment of extremes is the block maxima
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approach: the observed series is divided into blocks of
equal length and one aims to model the probability dis-
tribution of maxima obtained from these blocks with the
generalized extreme value distribution (GEV). For the
choice of blocks for daily precipitation sums, popular
strategies are: annual blocks (to avoid an explicit consid-
eration of seasonality), monthly blocks followed by an
individual treatment of each calendar month, or seasonal
blocks (three-monthly block size). Here we propose a
monthly block size, but instead of treating each calen-
dar month separately, we explicitly account for seasonal
variation in the model. This is realized by describing
intra-annual variation of GEV parameters with a series
of harmonic functions. This modelling approach is po-
tentially superior to the treatment of individual months
as it exploits the slow variations between individual
months for parameter estimation; strength is thus “bor-
rowed” from neighbouring calendar months. Further-
more, a description of the seasonality of extreme precip-
itation in terms of amplitude and phase can be achieved.

Although many applications do not directly require
seasonally resolved return levels, e.g. the design of hy-
draulic structures is based on annual return levels, sea-
sonality of extreme precipitation might enter indirectly
via a possible coincidence with snow melt Bronstert
(2003). However, exceedance probabilities for annual
maxima (and thus annual return levels) can be ob-
tained from exceedance probabilities of monthly max-
ima (monthly return levels) under the assumption of in-
dependence. Thus, the seasonal model is also a basis for
estimating annual return levels. We demonstrate with a
simulation study that the so derived annual return levels
can be more precise than those derived with the annual
block maxima approach.

The approach based on monthly block maxima and
the description of their probability distribution with a
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non-stationary GEV was suggested in Rust et al. (2009)
and Maraun et al. (2009) and exemplified with a UK
case study. Here, we apply this concept for Germany
and additionally carry out an explicit selection of orders
in the harmonic series for individual stations based on
cross validation. Apart from monthly resolved return
levels, a further advantage of the seasonal modelling
approach is a more precise estimation of annual return
levels; this is demonstrated using a simulation study.

In summary, the aim of this study is a) to develop a
gauge-based seasonally resolved climatology of extreme
precipitation for Germany, b) to go technically beyond
previous works by Rust et al. (2009) and Maraun et al.
(2009) by carring out order selection and c) to show in
a simulation study, that the return levels typically used
in decision making are more accurate than for a annual
approach without covariates.

We develop a seasonal extreme value model for daily
precipitation sums for more than 2,800 rain gauges in
Germany, presented in Section 2. The seasonal model
is based on the GEV with monthly block maxima and
is described in Section 3. There we also give the strate-
gies for selecting between different seasonal models. We
capture the seasonality using increasing orders of har-
monic functions. Return levels, seasonality and seasons
with the largest return levels for all stations are given
in Section 4.1 and the procedure is illustrated for two
synoptic stations in Section 4.2. We give annual return
levels in Section 5 and discuss the results in Section 6.

2 Data

A selection of gauges recording daily precipitation
amounts have been obtained from the National Climate
Data Center of the German Weather Service (Deutscher
Wetterdienst, DWD). Daily precipitation amounts were
measured with the Hellman rain gauge with a nominal
accuracy of 0.1 mm for almost 5,600 stations. We con-
sider a subset containing 2,865 time series covering an
observation period of at least 50 years. It happens that
some series contain days without observations (missing
values) within their observation period. The number of
available observations in years per station is depicted in
Figure 1. The locations of the example stations Potsdam
and Hamburg-Fuhlsbüttel are highlighted in orange and
purple. The orography of Germany is given in Figure 2.
For the present analysis, we consider the monthly max-
ima of daily precipitation amounts. Months with less
than 27 days of measured values are discarded from the
analysis.

3 Modelling extreme seasonal
precipitation

Concepts from extreme value statistics (EVS) (Beir-
lant et al., 2004; Embrechts et al., 1997) can be used
for an effective description of extreme precipitation.

Figure 1: Number of observed years of 2,865 considered stations
(observation period of at least 50 years). We discuss two stations in
detail: Hamburg-Fuhlsbüttel (purple triangle) and Potsdam (orange
triangle).

The two main routes of EVS are i) the peak-over-
threshold approach, modelling excesses over a thresh-
old with the generalized Pareto distribution, and ii) the
block-maxima approach, using the generalized extreme
value distribution (GEV) to describe the probability dis-
tribution of maxima drawn out of blocks of a certain
size, e.g. monthly or annual maxima. An introduction
to the topic is found in Coles (2001). Here, we follow
the block maxima approach with a monthly block size
and describe the resulting maxima with the GEV. The
parameters of the GEV are allowed to smoothly vary
throughout the year; the distribution of summer maxima
has thus parameters different from the winter maxima.
These smooth variations in parameters are modelled us-
ing series of harmonic functions. A cross validation ex-
periment helps to determine a suitable order of these har-
monic series for each station separately.

3.1 The block maxima approach

For a sequence of n random variables Xt (t = 1, . . . , n),
e.g. a series of daily precipitation, consider the maxima

Mn = max{X1, . . . , Xn} (3.1)

for a certain block length n, e.g. a month or a year.
For independent and identically distributed random vari-
ables Xt and a sufficient block size n the Fisher-Tippett
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Figure 2: Altitude for all 2,865 considered stations.

theorem (Coles, 2001) states that either the Weibull,
Gumbel or Fréchet distribution are suitable to describe
the probability distribution function (PDF) of the max-
ima Mn. These three distributions can be summarised in
the generalized extreme value distribution (GEV)

G(z; μ, σ, ξ) = exp

{
−

[
1 + ξ

(z − μ
σ

)]−1/ξ
}

(3.2)

with {z : 1 + ξ(z − μ)/σ > 0}. The location parameter
−∞ < μ < ∞ specifies the position of the probabil-
ity density function (PDF), the scale parameter σ > 0
and shape parameter −∞ < ξ < ∞ determine the
width and shape of the GEV, respectively. For a posi-
tive shape parameter ξ > 0, the PDF decay is slow (i.e.
algebraic) towards large values; this is the case of the
heavy tailed Frechet distribution. For a negative shape
parameter ξ < 0, the GEV has a finite upper bound
(Weibull distribution). The light tailed Gumbel distribu-
tion is obtained from the GEV in the limit ξ → 0 and
describes a fast (i.e. exponential) decay towards large
values (Coles, 2001; Embrechts et al., 1997).

The Fisher-Tippett theorem thus suggests the GEV
as a canonical model for block maxima, even for fi-
nite block size. Similar theorems not relying on the as-
sumption of independent random variables are given in
(Leadbetter et al., 1983, e.g.). The convergence rate of
the block maxima towards the GEV depends on the na-
ture of the underlying random variables and on their de-
pendence (Embrechts et al., 1997); the impact on the
convergence rate for a few classes of auto-correlated
processes is exemplified in Rust (2009). Several stud-
ies (Rust et al., 2009; Maraun et al., 2009) suggest that

(a) Potsdam

(b) Hamburg-Fuhlsbüttel

Figure 3: Q-Q-plot of the example stations Potsdam and Hamburg-
Fuhlsbüttel.

a monthly block size is suitable for daily precipitation
sums, at least in the mid-latitudes. Figure 3, showing the
Q-Q-plots for the example stations, confirms the choice
of a monthly block size for our data set.

3.2 Seasonally varying extreme value
distribution

For many geoscientific applications it is hard to justify
the assumption of a time-independent probability dis-
tribution for the block maxima Mi, particularly for a
sub-annual sampling with seasonality resolved. In the
present case, we expect precipitation maxima to vary
along with the seasonal cycle. The block maxima ap-
proach based on the GEV allows for time-dependent pa-
rameters, and thus for describing the block maxima with
a non-stationary GEV. To account for the periodic na-
ture of the seasonal cycle, the time dependence of GEV
parameters can be described with a series of harmonic
functions with increasing order m, e.g., for the location
parameter

μt = μ0 +

M∑
m=1

(μmsin sin(mωct) + μmcos cos(mωct)), (3.3)
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with t = 1, . . . , 12 the months in the year, ct the centre of
the t-th month given in days starting from January, 1st,
ω = 2π/365.25 the angular frequency of earth’s rotation
and m = 1, . . . , M the order of harmonic functions
used to model the location parameter (Rust et al., 2009;
Maraun et al., 2009); sine and cosine are always used
in pairs for a given order m.

Analogously, the seasonality of the scale parameter
can be expressed as

σt = σ0 +

N∑
n=1

(σnsin sin(nωct) + σncos cos(nωct)). (3.4)

with the order of harmonic function n = 1, . . . ,N for the
scale parameter.

In principle, also the shape parameter could be de-
scribed with a seasonal cycle. As this parameter is dif-
ficult to estimate and interferes with the estimation of
the scale parameter (Ribereau et al., 2011), this is only
meaningful if sufficient data is available. For all sta-
tions execpt one, we leave the shape parameter constant
across the year, i.e. there is only one estimate of

ξt = ξ0 (3.5)

per rain gauge.
The parameters in the linear models for location,

scale and shape are estimated by maximising the log-
likelihood.

l(θ|zi) =

I∑
i=1

log g(zi, |θ) (3.6)

with g(zi, |θ) being the probability density function of the
GEV with the harmonic series μmsin , μmcos and σnsin , σncos

describing the seasonal dependence of location and scale
and the constant shape ξ0 being summarised in the
parameter vector θ. The zi are the monthly maxima
used for parameter estimation. Confidence intervals of
the parameters are derived straight-forwardly based on
the asymptotic properties of the Maximum-Likelihood-
Estimator (Coles, 2001).

3.3 Return levels and return period

Extreme precipitation events are typically characterised
by a pair of values specifying their magnitude (return
level, rT ) and an associated expected time of their re-
currence (return period, T ). The return period T is the
average time an event of magnitude rT is expected to be
exceeded once, e.g. a 100-year precipitation event speci-
fies a magnitude (r100) which is expected to be exceeded
on average once every T = 100 years. In terms of proba-
bility distributions, the return level is the quantile of the
maxima distribution (GEV) for a certain probability. A
return level is thus obtained as

rT =

⎧⎪⎪⎨⎪⎪⎩
μ − σ

ξ [1 − y−ξT ] for ξ � 0

μ − σ log yT for lim ξ → 0
, (3.7)

with yT = − log(1/T ). The return period T = 1/(1− p) is
related to the probability p of a maximum not exceeding
the return level rT . Confidence intervals for return levels
are derived from the GEV parameters using the delta
method (Coles, 2001).

In engineering contexts, the 100-year or 1000-year
return level is frequently the basis for designing struc-
tures, such as dams or bridges. As these return periods
are typically larger then the length of the observation
period, the model needs to be extrapolated beyond ob-
servations.

3.4 Model selection

It is a priori not evident which order of the harmonic
series in μ and σ is adequate to describe the sea-
sonal variability. We determine orders using cross val-
idation (CV). The main idea of CV is to split the full
data set S into K subsets S k, k = 1, . . . ,K and use
K − 1 subsets to estimate model parameters and the re-
maining subset S k̄ to obtain a prediction error for the
data points not used for parameter estimation. Here, sub-
set always contain full years. Subsequently, subsets are
exchanged and a prediction error is obtained for another
subset. This procedure is repeated until a prediction er-
ror has been obtained for all K subsets S k. Combining
the prediction error for all subsets yields the cross val-
idation error (CVE). The prediction error is quantified
using the negative log-likelihood

Dk(zi|i ∈ S k) = −l(θk̄ |zi, i ∈ S k) (3.8)

with l(θk̄ |zi, i ∈ S k) denoting the likelihood evaluated for
maxima in S k̄ but with parameters obtained from S k.

The CVE for one station is obtained by summing
over all subsets

CVE =

K∑
k

Dk(zi |i ∈ S k). (3.9)

Here, we use K = 10 and thus randomly split each of
the records into 10 parts, each part contains full years of
observations. For the location and scale parameters, we
consider harmonic functions up to order five including
a zero order (constant parameter throughout the year).
Thus, 36 variants of different combinations of harmonic
orders are tested for each station. The most flexible
model contains 23 coefficients (11 for each location and
scale, and 1 for shape).

In addition, we set up a reference model: the maxima
of each month of the year are described by a stationary
GEV; a strategy frequently used in practice. This leads
to 12 different sets of parameters - location, scale and
shape for each month, and thus 36 parameters in total.
This formulation allows for a seasonally varying shape
parameter.

For about 31 % of all stations it is impossible to ob-
tain a CVE for the reference model, since the valida-
tion data set includes values outside the support of the
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Figure 4: Number of stations for the best seasonal models. The order
of harmonic functions in μ is depicted on the x-axis and order in σ is
coloured. The grey bar depicts the number of stations preferring the
reference model (RM).

GEV found for the training data set, which is typically
the case for ξ < 0, resulting in a GEV with an upper
bound. This results in an occurrence probability equal to
zero and an undefined log-likelihood. Thus, this model
is highly unsuitable to describe the data sets of these sta-
tions. The CRPS as a scoring rule based on the GEV
(closed form given by Friederichs and Thorarins-
dottir, 2012) would not exhibit the problem of non-
calculability. Here, however, we want to highlight this
case as it might lead to severe consequences.

For 168 stations (5.9 % of all time series) the consid-
ered seasonal models do not provide a smaller CVE than
the reference model. These stations are mainly charac-
terised by very high seasonal variations which can not
be represented by a constant shape parameter. For these
168 stations the reference model is considered to esti-
mate the return levels. Figure 4, showing the frequency
of the best seasonal models, illustrates that the majority
of stations (∼ 52 %) prefer a first or second order in μ
and σ.

4 Monthly return levels

4.1 Results for all stations

4.1.1 100-year return level

This section covers the seasonal 100-year return levels
for all 2,865 stations. Figure 5 depicts the return levels
in mm/day for each month. Orographic effects lead to
larger rainfall amounts for higher altitudes and thus also
to more intense extreme precipitation events. This is
confirmed by Figure 6, which shows the return levels

Figure 5: 100-year return levels in mm/day conditioned on the
month of their occurrence for 2,865 stations (dots). The panel show
the month December to November left to right and top to bottom.

with respect to the altitude for each calendar month.
Some stations with higher elevation and lower return
levels indicate that other aspects might be relevant for
extreme precipitation as well, e.g. the direction of the
incoming flow with respect to the orography.

In addition to this, Figure 5 shows that in January the
spatial differences are very pronounced, with the highest
return levels at stations of higher elevation and the low-
est in the north-east of Germany. The values increase
from south to north with variation in time and reach a
maximum at most of the stations in summer. But in some
regions, for example the Black Forest or the Harz, the re-
turn levels slightly decrease such that the spatial pattern
in summer is more uniform. Until December the return
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Figure 6: 100-year return levels in mm/day with respect to the
altitude of the station for the individual months.

levels decreased from north to south and show nearly the
same pattern as in January.

As the shape parameter has a strong influence on
large return levels, its value and uncertainty is of key in-
terest for practical applications. Figure 7 shows 1.96SDξ

against the estimate ξ; in blue the 168 stations preferring
the reference model and in yellow the remaining stations
with a seasonal model. Estimates inside the grey area are
not significantly different from zero based on asymptotic
normality of the estimator and a 95 % level of signifi-
cance. Estimates from the seasonal model (yellow) show
a considerably smaller standard deviation and thus a lot
more estimates can be considered to be different from
zero.

4.1.2 Amplitude

In addition to the return levels for each month, the
amplitude of the seasonal variations is interesting to
describe extreme precipitation. For a given return period
we seek to characterise the amplitude using

A% =
rTmax − rTmin

rTmax + rTmin

· 100 % (4.1)

with rTmax denoting the maximum and rTmin the minimum
return level over all months in the year.

In Figure 8 the amplitudes are depicted for all sta-
tions, with small/large values indicating weak/strong

Figure 7: Scatterplots of 1.96S Dξ against ξ for the 168 stations
preferring the reference model (blue) and the remaining stations
preferring a seasonal model (yellow); estimates inside the grey-
shading are not significant on a 95 % level based on asymptotic
normality of the estimator.

seasonality. Assuming that the climate is more continen-
tal in the east (convective precipitation events dominate
in summer) and more maritime in the west of Germany
(frontal precipitation dominating) the main results can
be summarised as:

• Very pronounced intra-annual variations at stations
in the east and the valleys: higher influence of heavy
convective precipitation in summer

• Less seasonal variations at stations further west
(higher maritime influence) due to a more dominant
all-year stratiform precipitation

• Weakest seasonality at stations with high elevation:
lift of air masses and accumulation effects lead to all-
year unchanged extreme precipitation

4.1.3 Phase

Finally, the month of the maximum 100-year return level
(phase of seasonal variations) is depicted in Figure 9.
In particular for the agricultural and tourist sector, or
for filling reservoirs, the months of the most intense
extremes are of special interest. In the eastern part of
Germany the highest precipitation is typically found in
June/July. At many stations further west but still in the
lowlands, the highest return levels occur from August to
October. This could be an indicator of the influence of
increased cyclone activity in autumn and thus a larger
contribution from stratiform precipitation. Some high
altitudes, i.e. the Harz, the Black Forest and the Bavarian
Forest, are characterised by a precipitation maximum in
the winter months. In addition to the station’s elevation,
the relation between orographic structure and main wind
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Figure 8: Percentage amplitude of the intra-annual variations of the
100-year return levels for 2,865 stations. Large/small values indicate
a strong/weak seasonality.

direction is an important factor. If a mountain chain
lies perpendicular to the main wind direction (west,
strongest storminess in winter) the lifting effects and the
connected convection are maximised and thus lead to
high precipitation amounts, particularly in winter.

4.2 Results for example stations

The first example station shows a case where the sea-
sonal approach provides quite good results. The data
set of the station Potsdam (orange triangle in Figure 1)
covers the period from 01.01.1893 to 31.05.2016. The
monthly maxima of the observed daily precipitation
amounts are shown in Figure 10 as Box-Whisker-Plots
(grey). The black line within the box denotes the me-
dian, the upper and lower bound of the box the 0.75
and 0.25 percentile. The whiskers describe the maxi-
mum and minimum value if they are closer to the me-
dian than the 1.5 inter-quartile range. Data points out-
side the whiskers are plotted as open circles. Strong
evidence for significant differences of the medians ex-
ists if the notches of two boxes do not overlap. In ad-
dition to this, the 0.99 percentile of the observation is

Figure 9: Month of occurrence of the maximum 100-year return
level in the year for 2,865 stations indicating the time of the year
when extreme precipitation events are strongest.

marked with a horizontal black line for each month. Re-
turn levels from the seasonal model with correspond-
ing 95 % confidence interval are shown as solid lines
and shadows coloured in yellow to blue for the non-
exceeding probabilities p = 0.25, 0.5, 0.75, 0.99. At the
station Potsdam, the seasonal model containing a sec-
ond order in location, first order in scale and no seasonal
variations in shape, which is labeled 2.1.0, is preferred.
The 0.25-, 0.5- and 0.75 quantiles reflect the lower and
upper quartile and the median of the observed precip-
itation amounts very well. Due to the large amount of
available data points the confidence intervals are small.
A suitable approach to investigate the quality of the
100-year return level is to count the precipitation events
above the 0.99 quantile line. Because of an observa-
tion period of nearly 123 years in Potsdam, 1.23 ex-
ceedings per month, or rather 15 exceedings per year
are expected. As shown in Figure 10, 16 daily precipita-
tion events exceed the 0.99 quantile. Including the con-
fidence intervals the model can represent the observed
maxima very well.

One of the 168 stations favouring the reference
model is presented to exemplify the potential improve-
ment of the applied seasonal approach. The data record
of the station Hamburg-Fuhlsbüttel (purple triangle in
Figure 1) is characterised by a long observation period
from 01.01.1891 to 31.05.2016. The monthly maxima
and the seasonal return levels are shown in Figure 11.
In addition to the result of the favoured reference model
in Figure 11a) the best seasonal model 3.3.0 (third or-
der in μ and σ and a constant ξ) is shown in b) as well.
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Figure 10: Box-Whisker-Plots (light grey) of monthly maxima of
observed daily precipitation amounts for the example station Pots-
dam (01.01.1893–31.05.2016) and the return levels (black curves)
obtained by the seasonal model 2.1.0 (second order in μ, first order
in σ and constant ξ) for p = 0.25, 0.5, 0.75, 0.99 (from the bot-
tom up) with their 95 %-confidence intervals (coloured area). The
black horizontal lines label the 0.99 percentile determined from the
observed data.

Since Hamburg-Fuhlsbüttel has a quite long observation
record, it is possible here to also vary the shape param-
eter in time according to Eq. 3.3 and 3.4. The thus ob-
tained 2.2.1 model (second order in μ and σ and first
order in ξ) provides a smaller CVE than the reference
model (Figure 11c)). Adding the variation in ξ to the
seasonal model (from Figure 11b) to Figure 11c)) do
not only improves the CVE but also reduces the amount
of necessary coefficients from 15 to 13. Additionally, it
can be noted that the reference model can represent the
observations very well, especially for lower return lev-
els. The 100-year return levels (blue curve), which are
of greater benefit in the engineering context, are how-
ever highly uncertain. Since the seasonal models com-
bine data from all months, this uncertainty is clearly re-
duced. Adding seasonal variations in the shape parame-
ter allow uncertainties to slightly rise again, in particular
for higher return levels. Additionally, the model is able
to capture the peak of rare extreme events in August.
For the long time series of Hamburg-Fuhlsbüttel, it is
possible and necessary to allow the seasonal variations
in the shape parameter as well. This option is subject to
further investigation. For shorter series a spatial model
for the GEV which considers all stations simultaneously
might allow also for a seasonally varying shape param-
eter. A variable shape parameter might as well be use-
ful in terms of a meteorological interpretation, since the
character of extreme precipitation varies in general from
stratiform precipitation in winter and convective events
in summer.

(a) reference model

(b) model 3.3.0

(c) model 2.2.1

Figure 11: Box-Whisker-Plots (light grey) of monthly maxima
of observed daily precipitation amounts for the example station
Hamburg-Fuhlsbüttel (01.01.1891–31.05.2016) and the return levels
(black curves) calculated with a) the stationary approach, b) the sea-
sonal model 3.3.0 (third order in μ and σ and constant ξ) and c) the
seasonal model 2.2.1 (second order in μ and σ and first order in ξ)
for p = 0.25, 0.5, 0.75, 0.99 (from the bottom up) with their 95 %-
confidence intervals (coloured area). The black horizontal lines label
the 0.99 percentile determined from the observed data.
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5 Annual return levels

For many applications in the field of hydraulic design
and risk assessment, the annual return levels are more
relevant than the monthly resolved levels. Commonly,
the GEV (Eq. 3.2) is used to describe annual maxima
and to estimate annual return levels. However, annual
return levels can also be obtained from the seasonal
model. The T -year annual return level rT can be derived
from the non-stationary model by numerically solving
the following equation (Maraun et al., 2009):

12∏
i=1

Gi(rT ) = 1 − 1
T

(5.1)

with Gi(rT ) being the probability of the occurrence of
a value smaller than rT in the month i. This approach
assumes independent maxima of the different months.
Figure 12 shows the annual 100-year return levels de-
termined from the best seasonal model for each station.
The return levels are characterised by higher values in
the east of Germany and in mountainous regions with
more than 128 mm/day. In the Alps the return levels even
reach values up to 298 mm/day. As already mentioned
in Section 4.1.1 for monthly return levels, there are fur-
ther important aspects, e.g. the direction of the incoming
flow, which might explain the pattern of the annual re-
turn levels as well.

5.1 Simulation study

To illustrate the improvement of obtaining annual return
levels derived from the seasonal model compared to di-
rectly modelling annual maxima with the GEV, we carry
out the following simulation study: We generate series
of monthly maxima using GEV-distributed random vari-
ables with a typical seasonal component in location and
scale (model 1.2.0: first order in μ, second order in σ,
constant ξ). The values for the different parameters are
shown in Table 1.

On the basis of these monthly maxima series we
apply two strategies for deriving annual return levels:
1) obtain annual maxima and estimate parameters for a
stationary GEV (annual approach), and 2) model the an-
nual maxima with a seasonal GEV model (seasonal ap-
proach). We generate series of different length (12 years
to 600 years), 10,000 iterations each. Since we assume
that the model selection determine the right order of har-
monic function, we also use the 1.2.0 model to obtain
annual return levels for approach 2). The results of both
strategies are compared with the model used for genera-
tion considering the Mean Squared Error (MSE) for the
return levels over all iterations N:

MSE =
1
N

N∑
n=1

(rT − rTref )
2 (5.2)

with rT being the return levels derived from one of the
modelling methods for annual maxima and rTref being

Figure 12: Annual 100-year return levels in mm/day derived from
the best seasonal model for each of the 2,865 stations.

Table 1: Parameters of the model used for generation of GEV-
distributed random variables with a first order in location, second
order in scale and constant shape.

μ0 μ1sin μ1cos σ0 σ1sin σ1cos σ2sin σ2cos ξ0

10.2 −0.6 −3.1 5.5 −0.5 −2 0.4 0.05 0.1

the annual return level derived from the model of gener-
ation (Tab. 1) using Eq. 5.1.

Figure 13 shows the MSE and the bias (rT − rTref ) for
the annual return levels obtained using 1) (dashed lines)
and 2) (solid lines) for 50-year (green), 100-year (blue)
and 1,000-year (red) return levels. The variance of the
return levels does not differ visually from the results of
the MSE (not shown). Both, MSE and bias of annual
return levels derived from the seasonal model are signif-
icantly smaller than for the standard approach based on
annual maxima, particularly for the important cases with
short record lengths and long return periods. For a typ-
ical observation length of 60 years in Germany and the
often used 100-year return level, the MSE of method 2)
is reduced by nearly 31 % with respect to method 1).
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Figure 13: MSE and bias of annual return levels calculated from
a generated data set using a annual approach (dashed lines) and a
seasonal approach (solid lines) for different return periods (50-year:
green, 100-year: blue, 1000-year: red) and for different series lengths
(x-axis). The variances of the return levels do not differ visually from
the MSE (not shown).

Assuming that the model selection is not able to find
the right order of harmonic functions, we also analysed
different seasonal models to obtain the annual maxima
(not shown). It turns out that annual return levels can be
derived more accurately with strategy 2) as long as the
seasonal model used in estimating parameters is not less
complex than the seasonality present in the data.

6 Summary and discussion

We describe monthly maxima of daily precipitation
amounts of 2,865 stations in Germany with a seasonal
Generalized Extreme Value (GEV) distribution to ex-
plicitly resolve seasonality. This is realized using har-
monic functions of different orders for the location and
scale parameter of the GEV, the shape parameter is held
constant in time. In contrast to previous publications
(e.g., Rust et al., 2009; Maraun et al., 2009), order se-
lection for the harmonic series for each station is sepa-
rately carried out using cross validation.

Only 168 of the 2,865 stations considered suggest
that our setup of seasonal models (orders from 0 to 5 for
location and scale parameter) is not sufficient to char-
acterise a more complex seasonal variation of very ex-
treme events (e.g. 100-year return level). For these sta-
tions we apply a modelling approach with a GEV for
each month separately. However, for one long series, we
explored the possibility of a seasonally varying shape
as well. The result suggests that a seasonal variation in
the shape parameter might be beneficial if there is suffi-
cient data to estimate the variation. As data for extremes

is frequently sparse at individual stations, a spatial ap-
proach might help to estimate seasonality in the shape
parameter. Such a strategy is currently under investiga-
tion by the authors including the unknown functional re-
lationship between the GEV parameters and the spatial
covariates using Legendre Polynomials to ensure inde-
pendence of the terms, a method suggest by Rust et al.
(2013) and Ambrosino et al. (2011). Other spatial mod-
elling approaches are, for example, the Regional Fre-
quency Analysis (Hosking and Wallis, 2005; Soltyk
et al., 2014) where regions of similar statistical char-
acteristics are combined and common probabilities for
extremes are obtained, or Bayesian Hierarchical Mod-
els (i.e. Cooley et al., 2007; i.e. Davison et al., 2012)
where the spatial variations are taken care of by a large-
scale contribution described with linear regression and
local variations captured by a spatial stochastic process.
A non-parametric way of modelling spatial variations
can be realized with generalized additive models (GAM)
(i.e. Stauffer et al., 2016; Simon et al., 2017). We ex-
pect that a spatial approach does not only provide in-
formation at ungauged sites but also improves accuracy
of return-level estimates, particularly for long return-
periods.

For all other stations the seasonal approach described
provides a very good representation of the data sets and
reduces the uncertainty of the return levels. In addition
to resolving seasonality, we compare two ways of es-
timating annual return levels: 1) the classical approach
based on annual maxima described with the GEV and
2) the approach proposed here based on monthly max-
ima and a seasonal GEV. To this end, we carry out a
simulation study, which demonstrates the improvement
in estimating annual return levels derived from the sea-
sonal model with respect to the return levels based on
annual maxima. MSE and bias of the two approaches
are compared and it turns out that the annual return lev-
els derived from the seasonal model and monthly max-
ima are more accurate, particularly for short series and
long return periods. This is plausible as the monthly
scale carries more information which facilitates parame-
ter estimation, particularly together with the assumption
of smoothly varying parameters throughout the year and
a parsimonious parametric model describing this varia-
tion. It is thus consequent, that annual return levels can
be estimated more accurately and more robustly with the
approach presented here.
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