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Abstract. This paper describes an approach to derive probabilistic predictions of local winter storm damage occurrences from 

a global medium-range ensemble prediction system (EPS). Predictions of storm damage occurrences are subject to large 

uncertainty due to meteorological forecast uncertainty (typically addressed by means of ensemble predictions) and 10 

uncertainties in modelling weather impacts. The latter uncertainty arises from the fact that local vulnerabilities are not known 

in sufficient detail to allow for a deterministic assessment of damages. Thus to estimate the damage model uncertainty, a 

statistical model based on logistic regression analysis is employed, relating meteorological analyses to historical damage 

records. A quantification of the two individual contributions to the total forecast uncertainty is achieved by neglecting 

individual uncertainty sources and analysing resulting predictions. Results show an increase in forecast skill if both 15 

meteorological and damage occurrence uncertainties are taken into account. It is demonstrated that skilful predictions on 

district level are possible on lead times of several days. Skill is increased through the application of a proper ensemble 

calibration method, extending the range of lead times for which skilful damage predictions can be made. 

1 Introduction 

Severe weather events and in particular severe winter storm events cause a major share of economic losses due to natural 20 

disasters in Europe and in Germany (MunichRe, 2007; MunichRe, 2012; MunichRe, 2013) and regularly cause a number of 

human fatalities.  

To prevent human fatalities and reduce property losses caused by natural disasters, national and regional civil protection 

agencies need to be supported by effective weather warning systems. Within the Sendai framework for disaster risk reduction 

(UNISDR, 2015), it has been stated, that for an effective disaster risk reduction an understanding of natural risks and their 25 

impacts is needed including all aspects of disasters such as vulnerability, capacity and exposure. With such understanding and, 

if possible, the ability to model the impacts of severe weather events improved warning systems should be designed, supporting 

decision making processes for tasks of civil protection agencies. 

The modelling of winter storm damages in Germany has been carried out in a number of recent studies, including both 

deterministic approaches (Klawa and Ulbrich, 2003; Heneka and Ruck, 2008; Donat et al. 2011) as well as probabilistic 30 

approaches (Heneka and Hofherr, 2010; Prahl et al., 2012). These storm damage models provide means to translate observed 
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or modelled wind speeds into local damage or loss ratios (i.e. losses normalized with the local sum of insured values). 

Depending on data availability these models include a regionally specific parameter estimation to describe differences in local 

vulnerabilities resulting e.g. from local differences in building characteristics (compare e.g. Donat et al., 2011). Rather than 

aiming at a quantitative model for predictions of loss ratios, here we employ a simple logistic regression model, aiming at the 

prediction of exceedance probabilities for defined loss thresholds. This model is similar to the first modelling step of the 5 

damage model described in Prahl et. al. (2012). 

In giving an estimate of the inherent uncertainty in the relationship between wind and damage, this allows us to quantify the 

statistical model uncertainties arising in the impact-modelling step. The second major source for uncertainty in storm impact 

predictions arises from meteorological forecast uncertainties. The latter uncertainty is commonly addressed by means of 

ensemble prediction systems (Palmer, 2000; Leutbecher and Palmer, 2008; Slingo and Palmer, 2011) which is why we base 10 

our study on the medium range ensemble prediction system operationally run at the European Centre for Medium-Range 

Weather Forecasts (ECMWF; Palmer et al., 2007).  

Our approach thus allows us to address and quantitatively compare the two main uncertainties arising in the modelling chain: 

meteorological forecast uncertainty and impact model uncertainty. In particular, we study the effect of neglecting uncertainty 

information, as commonly done when interpreting the ensemble mean of a forecast ensemble or applying a simple deterministic 15 

damage model neglecting the respective uncertainty. 

The aim of this paper is to demonstrate the benefit of a fully probabilistic approach predicting storm damages, which can form 

the basis for the design of risk based warning tools. We furthermore aim at demonstrating the benefit (in terms of forecast 

skill) of an explicit and full treatment of the involved uncertainties within the modelling chain. 

We structured the paper as follows. Chapter 2 describes the utilized data sources. The methodology, particularly the full 20 

modelling chain is described in chapter 3, including the verification methodology applied. Verification results are presented 

in chapter 4, followed by a discussion and conclusion in chapter 5. 

2 Data 

2.1 Insurance Loss Data 

Insurance data on losses to residential buildings were provided by the German insurance association (Gesamtverband der 25 

Deutschen Versicherungswirtschaft e.V., GDV). These comprise daily data on administrative district level, with areas ranging 

from about 40 km² for urban municipalities ("Kreisfreie Städte") to about 3000 km² for rural districts ("Landkreise"). In 

contrast to pointwise measurements from meteorological stations, the available insurance data represent measurements with 

an area-wide coverage of windstorm and thunderstorm losses making it most valuable for various weather impact studies. The 

data however contains some limitations and uncertainties that need to be kept in mind. Uncertainties in daily losses arise from 30 

the fact that the exact time of loss occurrence is indistinct in some cases, especially if an event has occurred at night. 

Furthermore, the area representativeness implies a dependence of losses on the local building stocks that needs to be taken into 
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account. To gain data comparable amongst districts it is thus necessary to consider relative values i.e. losses standardized by 

the total amount of insured values (insured sum) in the specific district. Commonly used by insurances is the term loss ratio 

which denotes the loss (in €) divided by the insured sum (in thousand €) which is thus specified in ‰ (=1€/1000€). Besides 

ensuring spatial homogenization, the consideration of relative losses removes temporal inhomogeneity's resulting e.g. from 

the growth of values or inflation. On district level, the GDV recorded losses on residential buildings arising from storm and 5 

hail events (covered by the "Verbundene Wohngebäude Versicherung", VGV) for the period 1997-2007. Here we consider the 

winter half year only (October through March). For these months, damages are almost exclusively caused by windstorms. 

However, in a few cases damages are due to hail which might take place in the vicinity of a storm’s cold front (hail was 

observed e.g. in the case of Kyrill; compare Fink et al., (2009)). Since these hail induced damages cannot be systematically 

separated in our analysis, this poses another uncertainty that needs to be reflected in the (probabilistic) relationship between 10 

local winds and resulting damages. 

2.2 COSMO-EU Analyses 

For training of the probabilistic storm damage model, analyses from the operational assimilation cycle for the COSMO-EU 

model (Schulz and Schättler, 2014) are employed. As a specific configuration of the non-hydrostatic COSMO-Model (Rockel 

et al., 2008; Doms, 2011), COSMO-EU is operationally run at DWD covering the European domain in a resolution of 7km, 15 

using 40 vertical levels with the lowest level 10 meter above ground. Forecasts are operationally initialized 6 hourly (00, 06, 

12 and 18 UTC) and performed for up to +78 hours. The COSMO-EU assimilation scheme (based on a nudging methodology) 

is performed 3 hourly (00, 03, 06, …, 21 UTC) and analysis files are written every hour. Here we use hourly wind gusts in 

10m height, which are extracted for each hour from the latest available analysis run. These are finally used to calculate daily 

maxima of wind gusts in 10 m height. The COSMO-EU analyses are available for the period 2006-2011.  20 

2.3 ECMWF-EPS Forecasts 

ECMWF is operationally running its Ensemble Prediction System (EPS) since 1992 (Molteni et al., 1996). This system is 

based on the same numerical weather prediction (NWP) model that is used for the deterministic weather forecast, the Integrated 

Forecasting System (IFS). However, in the ensemble prediction mode it is employed with a coarser vertical and horizontal 

resolution. The latter has been increased from an initial resolution of T63 (~200km) over TL159 (~120km; changed in 12/1996), 25 

TL255 (~80km; 11/2000), and TL399 (~50km; 02/2006) to the current resolution of TL639 (~32km; since 01/2010). To generate 

the ensemble the method of singular vectors (Palmer et al., 1998; Leutbecher and Palmer, 2008) is used to perturb the initial 

conditions. Initially 32 ensemble members were produced. Since December 1996 this number was increased to 50 members. 

One additional control forecast is calculated using the same (unperturbed) initial conditions as the deterministic run, but 

employing the coarser resolution of the EPS. Additionally, stochastic perturbations of the model physics were introduced in 30 

October 1998 (Buizza et al., 1999; Palmer et al., 2009).  
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For the current study we use the 6-hourly output of instantaneous 10 m wind speed of the 50 perturbed ensemble members 

operationally produced between 11/2000 and 01/2010 (in TL255 and TL399 resolution) as input for a statistical downscaling. 

Each forecast is integrated over 15 days, but the horizontal resolution is reduced after forecast day 10. We thus confine all 

further processing and analyses to the first ten forecast days of constant resolution throughout the respective integration. 

3 Methodology 5 

3.1 Statistical Downscaling of the ECMWF-EPS 

Within the COSMO-EU-domain, the global ECMWF-EPS forecasts were statistically downscaled to the fine COSMO-EU-

resolution of approx. 7 km, following the approach developed by Kruschke (2015). The basic concept of this downscaling 

procedure is a Multiple Linear Regression approach quantifying the relationship of fine scale surface gusts to the coarse scale 

(instantaneous) surface winds given by the respective ECMWF-EPS forecast. 10 

For each COSMO-EU grid-box (436.905 in total) an individual statistical model, i.e. a regression equation is established. This 

is done by objectively choosing skilful predictors from a given set of potential predictors. Essentially, these potential predictors 

are the EPS surface wind components and wind magnitudes scaled by the respective climatological 98th percentile (to achieve 

homogenisation with respect to orographic effects) and subsequently interpolated (first-order conservative) to the coarser of 

the analysed EPS resolutions, that is TL159. More specifically, for each individual COSMO-EU grid box the scaled and 15 

interpolated instantaneous 6-hourly surface wind components and magnitudes at EPS grid boxes within a radius of 300 km 

(calculated between respective COSMO-EU and EPS grid box centres) as well as the squared values of these parameters are 

used to predict 6-hourly (temporal window centred over timestep of instantaneous predictors) maximum 10m-gusts at the 

respective COSMO-EU grid box. Scaling and interpolation are done to reduce inhomogeneities potentially originating from 

employing two different generations of the EPS. The objective selection of skilful predictors is done by applying a Stepwise 20 

Linear Regression algorithm with Forward Selection and Backward Elimination. Starting with an empty statistical model – 

during the Forward Selection – all potential predictors are tested whether they provide significant benefit (p<5% according to 

f-test regarding residual sum of squares) to the model. The best predictor is chosen to enter the model. Subsequently, all 

remaining predictors are tested equivalently whether they can significantly improve the model. This is done repeatedly until 

no more predictors yield significant additional value for the statistical model. Finally, the Backward Elimination conversely 25 

checks whether predictors can be removed again without significantly decreasing the statistical model’s quality (p<10%). 

The training of this statistical downscaling procedure and its evaluation (by three-fold cross-validation and several MSE-

related metrics) is based on dynamical regionalisation of 181 European winter storm episodes that were done by employing 

the numerical weather prediction model chain (global model GME and regional model COSMO-EU) of the German Weather 

Service (DWD). 30 

A comprehensive description of this statistical downscaling approach, as well as its development and evaluation is given by 

Kruschke (2015). This includes testing various other combinations of potential predictors and demonstrating that this approach 
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outperforms (measured with respect to the mean squared error of wind gusts) a similar approach described by Haas & Pinto 

(2012), which is also based on Multiple Linear Regressions. Kruschke (2015) additionally provided an effective quantification 

of uncertainties of the statistically modelled gusts. However, these uncertainty estimates are not used in the course of the 

current study. 

3.2 Ensemble Post Processing 5 

Aim of the ensemble prediction is an estimation of the uncertainty in the prediction. In practice, an ensembles often under- or 

overestimate the uncertainty, what is meant by the terms  under- and over-dispersion At the ECMWF, the method of singular 

vectors is used to generate a set of initial conditions which are used to calculate several members of a forecast ensemble with 

the intention to produce an optimal spread. It should be noted, that the ECMWF EPS has been constructed in the way that its 

spread is optimised for the medium-range, thus for forecasts of three to five days. Despite of such sophisticated techniques for 10 

the perturbations, ensemble forecasts still often tend to an under-dispersion. A post-processing can help to adjust the spread of 

the ensemble, what is meant in this study by the term « calibration ». Several methods exist to calibrate a forecast ensemble 

partly depending of the ensemble-type (single-model, multi-model or lagged-averaged-forecasts). An overview of calibration 

techniques for medium-range forecasts can be found in Gneiting (2014). For this study, we apply the approach of Bröcker and 

Smith (2008). This method states a so-called ensemble dressing approach, whose purpose is to estimate the probability density 15 

function (PDF) of the ensemble, and can be used to adjust the spread. The chosen method has the advantage that it can represent 

different methods of ensemble dressing depending on the selected parameter set. It transforms the discrete members (50 in our 

case) to a continuous distribution function, by combing kernel functions for each individual member. The ECMWF EPS is a 

single model ensemble and all of the members are indistinguishable. For this reason, all members are dressed by using the 

same Gaussian kernel. The dressing is done using an affine ensemble transformed version of the original data (Bröcker and 20 

Smith, 2008). While the dressing is used to transform the discrete members to a distribution function, the affine transformation 

is used to eliminate biases from the raw forecasts. Parameters for the transformation as well as for the Gaussian kernel are 

estimated using the minimization of the continuous ranked probability score (CRPS, compare Gneiting and Raftery, 2007). 

The CRPS is a measure, which describes the performance of an ensemble in its entity by comparing the forecast and 

observation CDF’s.  25 

In general, the aim of the method is the estimation of the entire probability density function (PDF) of forecasts, based on the 

50 ensemble members. However, in our case, we are interested in deriving a corrected 50 member forecast ensemble, which 

is representative for this full PDF. This can simply be accomplished by randomly sampling the 50 members from the calibrated 

PDF. However, the calibration should not be interpreted for these individual members, since the method is designed to calibrate 

the ensemble properties (such as ensemble bias and dispersion) rather than the individual members’ properties. 30 
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3.3 Probabilistic Storm Loss Model 

In the last step, the forecasts of near surface maximum gusts are translated into probabilistic estimates for the exceedance of 

specified loss ratio thresholds (“damage occurrences”). Due to insufficient information about meteorological conditions on 

sub-grid scales (e.g. turbulent gusts induced through localized orographic features) as well as lack of knowledge on individual 

building characteristics, it is impossible to model damage occurrences on individual entity level in a deterministic manner. 5 

Instead, a statistical relation, valid for the total stock of buildings within a district is derived, which shall enable the 

specification of probability estimates to express these uncertainties. To do so, logistic regression analysis is performed for each 

district. Damage occurrences, defined as the exceedance of loss ratio above a certain threshold are derived from the observed 

loss ratio time series and resulting time series are then related to daily maxima of near surface wind speeds from the COSMO-

EU analyses to train the logistic regression curve. For each district, wind speeds at the closest grid point from the centre of the 10 

district are used. 

3.4 Probabilistic Forecasts of Damage Occurrences 

To be able to investigate the influence of the individual uncertainty sources (meteorological forecast uncertainty and damage 

modelling uncertainty) different probability forecasts are set up. Specifically, four different setups result from i) treating no 

uncertainty resulting in deterministic forecasts, ii) treating only meteorological forecast uncertainties, iii) treating only damage 15 

modelling uncertainty and iv) a full uncertainty treatment including both uncertainty sources.  

The derivation of probability forecasts for damage occurrences is straightforward in the case of individual (single) member 

forecasts which is done simply by applying the logistic regression function (described in the Sec. 3.3) to calculate a probability 

estimate for the given forecasted wind speed. Similarly, the logistic regression function can be applied to the ensemble mean. 

Resulting probability estimates include damage modelling uncertainty, while neglecting meteorological uncertainties (setup 20 

iii). Additionally, meteorological forecast uncertainty information is taken into account by applying the transfer function to 

each ensemble member. Assuming the members to be equally likely, probability forecasts can then be calculated as the 

ensemble mean of the damage occurrence probabilities derived for the individual ensemble member forecasts (setup iv).  

Similarly, to neglecting meteorological forecast uncertainties, the statistical uncertainty from the damage-modelling step can 

be neglected by assuming a stepwise function instead of the logistic regression curve (compare Fig. 1, top). This is done by 25 

assuming a probability of one in case the forecasted wind speed exceeds a critical threshold and a probability of zero otherwise. 

Even though not restricted to this choice, we choose this critical threshold to correspond to the wind speed for which the 

probability from the logistic regression analysis is 0,5. No treatment of uncertainty is accomplished, when applying this 

“deterministic” damage occurrence function to the ensemble mean forecast (setup i). Finally, probability forecasts can be 

generated by applying the “deterministic” damage occurrence function to individual ensemble member forecasts. Probability 30 

estimates are then again calculated by averaging over the resulting individual member probability (setup iii). Since in the 

deterministic case this is either one or zero, this is similar to the fraction of members exceeding the critical wind threshold.  
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3.5 Verification Methodology 

The statistically downscaled wind gust ensemble forecasts are investigated on grid-point basis by means of Talagrand diagrams 

(see e.g. Jolliffe and Stephenson, 2003; Wilks, 2011). A Talagrand (or rank) histogram can be used to illustrate model biases 

as well as an under- or over- dispersion of the ensemble. To construct the Talagrand diagram, the ensemble members are 

ordered after their rank for each time step and for each grid cell in ascending order. The frequency of observations falling in 5 

between these ranked ensemble members is counted. In a perfect ensemble, each rank would be equally populated, meaning 

that each ensemble member is equally likely. An asymmetry shows a bias, as too often the ranks of the weakest or the strongest 

members are populated. If the Talagrand diagram has a u-shape, the ensemble is under-dispersive. This means that the 

observations are often outside the range spanned by the ensemble. In other words, the ensemble does not cover the entire range 

of uncertainty. In the opposite case of an over-dispersive ensemble, intermediate ranks of the Talagrand diagram would be 10 

overpopulated. This means that observations often lie close to the ensemble median, indicating an overestimation of the 

involved uncertainty. 

Forecast quality of derived daily probability estimates for damages on district level are assessed by means of the Brier Score 

(Wilks, 2011) which is the mean quadratic error of the probability forecast 

𝐵𝑆 =
1

𝑁𝑡
∑ (𝑓𝑡 − 𝑜𝑡)

2
𝑡        (1) 15 

where 𝑓𝑡  is the forecasted probability at time t and 𝑜𝑡  the observation being either one if an event has occurred and zero 

otherwise. Forecast skill is evaluated with respect to a reference forecast, leading to the Brier skill score 

𝐵𝑆𝑆 = 1 −
𝐵𝑆

𝐵𝑆𝑟𝑒𝑓
      (2) 

with 𝐵𝑆𝑟𝑒𝑓 being the Brier score of the reference forecast. In the course of this study we use the climatological forecast, i.e. 

the climatological event frequency as reference. Separately for each district, Brier Scores and Brier Skill Scores are evaluated. 20 

To summarize the verification statistics, Brier score and Brier Skill Score are evaluated additionally based on all forecast times 

and all 𝑁𝑑 districts.  

𝐵𝑆𝑡𝑜𝑡 =
1

𝑁𝑑

1

𝑁𝑡
∑ ∑ (𝑓𝑡,𝑑 − 𝑜𝑡,𝑑)

2
𝑡𝑑       (3) 

where 𝑓𝑡,𝑑 is the forecasted probability at time t in district d and 𝑜𝑡,𝑑 the corresponding observation. It should be noted that 

districts are equally weighted in Eqn. 3, disregarding differences in size. It might be argued, that this leads to an overweighting 25 

of small districts, e.g. urban municipalities. However, in our study we omitted such weighting since typically the sum of insured 

values is higher in these urban municipalities, justifying such higher weighting.  

Confidence intervals on derived Brier Scores are calculated by means of a bootstrap method, randomly generating 10000 𝐵𝑆𝑡𝑜𝑡 

values. This sampling is accomplished by randomly drawing 𝑁𝑑 ∙ 𝑁𝑡 times from the original set of individual contributions 

(𝑓𝑡,𝑑 − 𝑜𝑡,𝑑)
2 to the total Brier score in Equation 3. Confidence intervals on 𝐵𝑆𝑡𝑜𝑡 are then calculated as the 5% and 95% 30 

quantiles of the 10000 randomly generated 𝐵𝑆𝑡𝑜𝑡 values. Differences in the Brier Skill Score are considered significant, if the 

derived 90% confidence intervals are exceeded. 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-182, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



8 

 

4 Results 

4.1 Verification of severe wind gust predictions based on statistically downscaled EPS 

In a first step, the statistically downscaled ensemble forecasts were verified against the COSMO analyses, by means of the 

rank histogram statistics described in Sec. 3.5. The resulting Talagrand diagrams for forecast lead times of 1, 3 and 9 days 

(red, green and blue, respectively) are shown in Fig. 2 (left). The first thing to note is that there is an asymmetry to the right 5 

hand side. For 1 day forecast lead time it is found that in nearly 40% of the cases, the observation is equal or above the largest 

value of the ensemble. At first sight, such frequency bias appears to be rather critical. However, the absolute bias of the 

downscaled ensemble forecasts (not shown) ranges only in between 0.1-0.5m/s, depending on the grid box considered. 

Furthermore, considering the conditional bias of the ensemble forecasts (not shown) revealed that this underestimation occurs 

mainly for low forecasted gusts. Still, the application of this dataset for storm damage modelling would lead to an 10 

underestimation of the estimated storm damage probabilities. The second thing to note in Fig. 2 (left) is the underdispersion, 

demonstrated by the u-shape. As described in Sec. 3.5, this indicates an underestimation of the uncertainty on forecasted wind 

gusts. With increasing forecast lead time, both u-shape as well as the asymmetry in the Talagrand diagram decreases (Fig. 2, 

left). This means that both underdispersion and frequency bias decrease with increasing forecast lead time, which might relate 

to the fact that the ECMWF EPS system as mentioned above is primarily designed for forecasts in the medium range. Thus, 15 

the ensemble spread is assumed to be optimised for lead times of several days, for shorter lead times however this might not 

be the case. 

To correct both bias and underdispersion, the ensemble post processing technique after Bröcker et al. (2008) was applied to 

the data. Considering the Talagrand diagrams for the post processed forecast (Fig. 2, right) shows nearly equally populated 

ranks. Slightly higher populations (doubled in case of forecast lead time of 1 day) are found for the lowest and highest ranks. 20 

In only 4% of all forecasts, the observation falls below the lowest value and above the highest of the ensemble forecast 

members. Thus, the underdispersion is largely removed by the post processing. For increasing lead time the remaining 

underdispersion further declines. Also the Talagrand histograms for the post processed ensemble (Fig. 2, right) show no 

considerable asymmetry, indicating that the bias found for the downscaled forecasts are removed.  

4.2 Prediction skill of storm loss occurrences 25 

The four different settings (as described in Sec. 3.4) are used to forecast storm damage occurrences from the statistically 

downscaled EPS forecasts. As an illustrative example, resulting forecasts on district level are visualized in Fig. 3 for October 

31st 2006 (winter storm Britta). In about half of all 439 districts, the loss ratio within individual districts exceeded the threshold 

0.0001‰. For a lead time of 1d (forecasts initialized on 12 UTC of the previous day) the deterministic setup (no uncertainty 

treatment) forecasts such exceedance in considerably less districts. With a treatment of meteorological uncertainty, non-zero 30 

probabilities for damage threshold exceedances are derived in a number of districts, for which the deterministic model does 

not forecast a threshold exceedance. However, still large areas which had been affected by damages feature only probabilities 
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below 10%. The treatment of damage occurrence uncertainty in case of Storm Britta yields a rather different picture. Now, 

probabilities of 20% or higher are derived for most northern regions which featured damages. Particularly considering the 

dressed ensemble forecasts, forecasts applying a full uncertainty treatment feature probabilities higher than 40% on most 

regions affected while probabilities of 10-20% in the southern regions in which only few individual districts featured damages. 

Considering longer lead times, it shows that using the full uncertainty information (particularly by means of the dressed 5 

ensemble) seems to be advantageous compared to the methods disregarding uncertainty information. In this example, using 

full uncertainty information even 9 days in advance yields probabilities of 10-20% in most of the areas affected while 

neglecting the uncertainty information does not yield any signal with respect to damage occurrences. 

Of course, the quality of probabilistic forecast can’t be judged by means of single forecasts or single storm situations. Instead, 

a systematic evaluation of forecast quality is performed by means of objective verification. Verification of damage occurrence 10 

forecasts is performed for exceedances of a lower threshold (loss ratio > 0.0001‰) as well as a higher threshold (loss ratio > 

0.001‰). Climatological occurrence frequencies for events defined in this way range from 9 to 45 days per winter half year 

for the former, and 1 to 11 days per winter half year for the latter depending on the district considered. In average over all 

districts, climatological event frequencies are about 20.9 days per winter half year (11.5% of days) for the low threshold and 

3.5 days (2%) for the high threshold. It should be noted, that the events exceeding the higher threshold are a subset of the 15 

events exceeding the lower threshold. However for readability, we call the former set of events “low impact events”, since in 

terms of the occurrence frequency the lower impact events strongly dominate (by a factor of about 6). 

 

Considering the Brier Skill Score (as described in Sec. 3.5) with the climatology as reference forecast it is confirmed, that the 

deterministic forecasts of damage occurrences only yield very low skill on the first forecast day (compare circles in Fig. 4). 20 

Considering meteorological uncertainties for low impact events (loss ratio > 0.0001‰), significant forecast skill is achieved 

for up to 6 days lead time (Fig. 4, left). However, skill is strongly increased if the damage model uncertainty, namely the 

statistical uncertainties within the relation between wind and damage occurrence probability, are treated. For lead time of 1 

day the BSS raises from about 0.1 to nearly 0.3. Treating the damage model uncertainty yields skilful forecasts for the whole 

range of lead times considered. For low impact events it shows that an explicit treatment of both uncertainties only yields small 25 

additional value, indicating that uncertainty in this case is dominated by the damage model uncertainty. Only for long lead 

times, for which meteorological forecast uncertainties naturally grow, an additional advantage is generated by the explicit and 

full treatment of both uncertainty sources. For lead times of 9 days this advance in forecast skill corresponds to a gain of about 

1 day in lead time. 

The situation is different in case of high impact events. Even for lead time of 1 day, treating both uncertainty sources yields a 30 

significant advantage compared to the other methods. This can be understood by considering that for the high impact situations 

(featuring severe wind conditions) even on such short lead times considerable meteorological uncertainty (on forecasted wind 

speeds) is present. The gain of forecast skill (by means of full uncertainty treatment) again increases with increased lead time. 

This of course is due to growing meteorological forecast uncertainty which is even larger in case of the high impact events. 
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Compared to the methods treating only individual uncertainty sources, the full treatment of uncertainty leads to an 

improvement of forecast skill corresponding to about 2-3 days for lead times up to 9 days. 

Additionally, it is found that the ensemble post processing method (as described in Sec. 3.2) leads to an improvement in 

forecast skill. This improvement is found to be stronger and statistically significant for short lead times and particularly in the 

case of high impact events. This is consistent to the finding that both bias as well as underdispersion are stronger at short lead 5 

times. Particularly in case of high impact events the correction of bias and underdispersion results in a gain in forecast skill 

corresponding to about 1-2 days lead time.  

The spatial stratification by districts shows that forecast skill is not homogeneous over German districts (Fig. 5). In general, 

higher skill is found in northern regions. It can be assumed that this higher skill in northern regions is due to an increasingly 

flat orography. Over complex terrain, predictability of wind gusts can generally be assumed to be lower, which is thus 10 

consistent to the spatial differences with respect to the predictability of damage occurrences.  

Furthermore, the spatial stratification also shows, that skilful forecasts throughout Germany are only achieved through a 

treatment of the damage model uncertainty (Fig. 5), even for the shortest lead time of 1 day. Further improvement is achieved 

by full treatment of uncertainty, which has been quantified in the previous paragraphs. 

5 Conclusions and Discussion 15 

A probabilistic approach to forecast local occurrences of damages due to severe winds was presented. The approach is based 

on a logistic regression analysis, relating daily maxima of near surface wind speeds from meteorological analysis data to 

damage occurrences for individual districts within Germany, defined through the exceedance of the loss ratio over a specified 

threshold. Due to unknown meteorological conditions on subgrid scales as well as unknown details on individual housing 

characteristics, it is impossible to model damage occurrences on individual building level in a deterministic manner. Instead 20 

only a statistical relation valid for a certain stock of buildings within a district can be derived. The probability estimates for 

specific wind speeds then reflect the “damage occurrence uncertainty” arising from unknown details on unresolved spatial 

scales. 

Forecasting winter storm damages, further uncertainty arises due to meteorological forecast uncertainties. In this study, these 

uncertainties were addressed by applying the storm damage model to the operational EPS system of the ECMWF.  Since the 25 

resolution of the ECMWF EPS is too coarse, a statistical downscaling was applied to obtain near surface wind gusts on the 

COSMO-EU grid (7km). 

In a first step, the statistically downscaled wind speeds were verified against analyses, indicating a bias of the ensemble 

predictions towards lower wind speeds. In addition, the ensemble predictions were found to be underdispersive, thus showing 

too few ensemble spread, which indicates an underestimation of uncertainty by the ensemble. 30 

By applying the probabilistic storm damage model to the ensemble forecasts the influence of the individual uncertainty sources 

(meteorological forecast uncertainty and damage model uncertainty) has been investigated.  
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Results show that neglecting the statistical uncertainty arising within the damage model leads to rather poor forecast skill. 

Particularly for low impact events and for small lead times, the damage model uncertainty is found to dominate the overall 

uncertainty. This reflects the fact, that meteorological forecast uncertainties are obviously small at short lead times and 

particularly in the case of low impact (low wind) situations where basically an ensemble mean forecast or even a single 

deterministic forecast is sufficient to derive reasonable forecasts. 5 

With longer lead times meteorological forecast uncertainties naturally play an increasing role. Particularly for high impact 

situation (due to severe winds) it was shown that meteorological forecast uncertainties cannot be neglected without severe 

deficiency in skill. This means that an explicit treatment of both uncertainties leads to strong improvement of forecast skill.  

The reason for this can be found in the nonlinearity of the relation between the meteorological parameter wind and resulting 

impact or impact probability. Basically such nonlinear relation implies the necessity of weighing ensemble members in a more 10 

complex fashion compared to calculating simply the ensemble mean wind speeds. This nonlinear weighing is taken into 

account by the impact modelling step and subsequent ensemble averaging for the forecast quantity of interest (in this case 

impact probability). Thus in such situation an explicit treatment of uncertainty through the complete modelling chain is highly 

beneficial. 

As stated, for short lead times and low impact situations this effect due to an explicit and full uncertainty treatment is negligible. 15 

For large lead time (up to 9 days) this effect corresponds to a gain in forecast lead time of one day. For high impact situations 

this effect is even stronger corresponding to a gain of 2-3 days lead time. 

Both bias and underdispersion of the ensemble forecasted wind speeds have been treated by applying an ensemble post 

processing method (ensemble dressing) which is found to effectively compensate both shortcomings. Using the ensemble 

dressed wind speeds as the basis for the damage occurrence forecasts shows additional forecast skill corresponding to a gain 20 

of 1-2 days lead time. This gain is particularly strong at shorter lead times of a few days, for which a stronger bias as well as 

a stronger underdispersion in forecasted wind speeds has been found. 

Overall this study shows, that skilful predictions of storm loss occurrences on lead times of several days can be made using 

the presented (fully probabilistic) framework to integrate meteorological forecast uncertainties and uncertainties resulting from 

impact model. Findings thus demonstrate their potential use in risk based warning systems. 25 
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Figure 1: Illustration of the methodology to derive probabilistic impact prediction from ensemble forecasted wind 

speed. (top) Probabilistic storm damage function – logistic regression curve – relating the forecasted wind speed to a 

probability of damage occurrence. The dashed line indicates the deterministic version of such damage function being 

zero below the critical wind threshold and one above, respectively. (bottom) Illustration of wind speeds forecasted 

by a 10 member ensemble in solid lines. Dashed line indicates the ensemble mean.  
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Figure 2: (left) Talagrand diagram of statistically downscaled EPS forecasts, lead time 1 day (red), 5 days (green) 

and 9 days (blue) for January 2006 to January 2010. (right) Talagrand diagram of statistically downscaled and post 

processed EPS forecasts, lead times 1, 5 and 9, January 2006 to January 2010. 
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Figure 3: Observed occurrences and forecasted probabilities for loss ratios exceeding 0.0001‰ for October 31st 

2006 (Winter storm Britta). (a) Observation. (b) Deterministic forecast disregarding both uncertainty sources. 

(c) Only considering the meteorological uncertainty. (d) Only considering the damage modelling uncertainty. 

(e) Considering both uncertainties. (f) Considering both uncertainties, based on the dressed ensemble. (© 

GeoBasis-DE / BKG 2008) 

 

 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-182, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



17 

 

   

Figure 4: Lead time dependent Brier Skill Score (BSS; employing climatology as reference forecast) for events with 

loss ratio exceeding 0.0001‰ (left) and loss events with loss ratio exceeding 0.001‰ (right). Shown in black symbols 

are verification results for the 4 different setups, red triangles shows verification results using the post processed 

ensemble. 90% confidence intervals from a bootstrapping method are shown as shaded areas.  
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Figure 5: Brier Skill Score (BSS; employing climatology as reference forecast), Loss threshold 0.0001‰. (© 

GeoBasis-DE / BKG 2008) 
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