127 research outputs found

    Anthropometric measurements of the orbita and gender prediction with three-dimensional computed tomography images

    Get PDF
    Background: The aim of the study was to investigate the orbital anthropometric variations in the normal population using three-dimensional computed tomography (3D-CT) images and to define the effects of age and gender on orbital anthropometry.Materials and methods: Three-dimensional orbita CT of 280 patients, obtained for various reasons, were retrospectively evaluated in 772-bed referral and tertiary-care hospital between April 2011 and June 2012. Using 3D images, orbital width, height, biorbital-interorbital diameter and orbital index were measured. Measurements were obtained comparing right and left sides and male to female. The relation of the results with age and gender was analysed.Results: Right orbit was found to be wider than left (p < 0.0001). Male patients had wider (p < 0.0001) and higher (p = 0.0001) orbits. Right orbital index was found to be smaller than the left one (p = 0.005). No differences were found between the genders in terms of right and left orbital indexes (p > 0.05). Biorbital (p < 0.0001) and interorbital (p = 0.01) widths were found to be higher in males. There was no relation between the age change and the parameters defined (p > 0.05).Conclusions: No relation was found between age and orbital measurements. It was concluded that orbital images obtained with 3D-CT may be used as a method for gender evaluation

    Comparisons between Tethyan Anorthosite-bearing Ophiolites and Archean Anorthosite-bearing Layered Intrusions: Implications for Archean Geodynamic Processes

    Get PDF
    Elucidating the petrogenesis and geodynamic setting(s) of anorthosites in Archean layered intrusions and Tethyan ophiolites has significant implications for crustal evolution and growth throughout Earth history. Archean anorthosite-bearing layered intrusions occur on every continent. Tethyan ophiolites occur in Europe, Africa, and Asia. In this contribution, the field, petrographic, petrological, and geochemical characteristics of 100 Tethyan anorthosite-bearing ophiolites and 155 Archean anorthosite-bearing layered intrusions are compared. Tethyan anorthosite-bearing ophiolites range from Devonian to Paleocene in age, are variably composite, contain anorthosites with highly calcic (An44-100) plagioclase and magmatic amphibole. These ophiolites formed predominantly at convergent plate margins, with some forming in mid-ocean ridge, continental rift, and mantle plume settings. The predominantly convergent plate margin tectonic setting of Tethyan anorthosite-bearing ophiolites is indicated by negative Nb and Ti anomalies and magmatic amphibole. Archean anorthosite-bearing layered intrusions are Eoarchean to Neoarchean in age, have megacrystic anorthosites with highly calcic (An20-100) plagioclase and magmatic amphibole and are interlayered with gabbros and leucogabbros and intrude pillow basalts. These Archean layered intrusions are interpreted to have predominantly formed at convergent plate margins, with the remainder forming in mantle plume, continental rift, oceanic plateau, post-orogenic, anorogenic, mid-ocean ridge, and passive continental margin settings. These layered intrusions predominantly crystallized from hydrous Ca- and Al-rich tholeiitic magmas. The field, petrographic and geochemical similarities between Archean and Tethyan anorthosites indicate that they were produced by similar geodynamic processes mainly in suprasubduction zone settings. We suggest that Archean anorthosite-bearing layered intrusions and spatially associated greenstone belts represent dismembered subduction-related Archean ophiolites

    2D Materials-based platforms for electroanalysis applications

    Get PDF
    A new class of nanomaterials called "2D materials" (2DMs) is attracting recently the electrochemical sensing field due to the unique physicochemical properties associated to their chemical structure, formed by ultra-thin layers. In this review, we summarize the recent advances in the electroanalysis area using 2DMs giving first a brief overview on the structure, synthesis and properties of these materials followed by the analysis of their advantages while used in the development of electrochemical sensors

    Transitional Care for Patients with Congenital Colorectal Diseases: An EUPSA Network Office, ERNICA, and eUROGEN Joint Venture

    Get PDF
    Background: Transition of care (TOC; from childhood into adulthood) of patients with anorectal malformations (ARM) and Hirschsprung disease (HD) ensures continuation of care for these patients. The aim of this international study was to assess the current status of TOC and adult care (AC) programs for patients with ARM and HD. Methods: A survey was developed by members of EUPSA, ERN eUROGEN, and ERNICA, including patient representatives (ePAGs), comprising of four domains: general information, general questions about transition to adulthood, and disease-specific questions regarding TOC and AC programs. Recruitment of centres was done by the ERNs and EUPSA, using mailing lists and social media accounts. Only descriptive statistics were reported. Results: In total, 82 centres from 21 different countries entered the survey. Approximately half of them were ERN network members. Seventy-two centres (87.8%) had a self-reported area of expertise for both ARM and HD. Specific TOC programs were installed in 44% of the centres and AC programs in 31% of these centres. When comparing centres, wide variation was observed in the content of the programs. Conclusion: Despite the awareness of the importance of TOC and AC programs, these programs were installed in less than 50% of the participating centres. Various transition and AC programs were applied, with considerable heterogeneity in implementation, content and responsible caregivers involved. Sharing best practice examples and taking into account local and National Health Care Programs might lead to a better continuation of care in the future. Level of Evidence: III

    Petrology of the tekirova (Antalya) ophiolite (Southern Turkey): Evidence for diverse magma generations and their tectonic implications during Neotethyan-subduction

    No full text
    The SW Antalya Complex is an assemblage of Mesozoic carbonate platform, margin and ophiolitic rocks which record the formation and tectonic emplacement of a small Mesozoic ocean basin. The late Cretaceous ophiolitic rocks are located at two localities, namely the relatively intact Tekirova ophiolite to the east of Kemer zone and the dismembered Gödene ophiolite to the west of Kemer zone. The Tekirova (Antalya) ophiolite comprises harzburgitic tectonites, ultramafic to mafic cumulates, isotropic gabbros and sheeted dikes. Numerous isolated dikes, ranging in thickness from 5 cm to 10 m, intruded the crustal rocks at different structural levels. The isotropic gabbros are represented by gabbro, diorite and quartz diorite rocks with granular to ophitic-subophitic textures. The isolated dikes are characterized by dolerite, diabase and microdiorite with ophitic, intersertal and microgranular textures. These rocks exhibit tholeiitic to alkaline compositions. New geochemical data presented in this paper from the isolated dikes and isotropic gabbros suggest that there are three main types of parental basic magmas that form the oceanic crustal rocks of the Tekirova (Antalya) ophiolite. These are (1) IAT series which can be referred to the Group I isolated dikes and isotropic gabbros; (2) low-Ti boninitic series characterized by the Group II isolated dike and isotropic gabbros; and (3) OIB-type including the Group III isotropic gabbros. The geochemical evidence suggests that the crustal rocks of the Tekirova (Antalya) ophiolite were generated from a progressive source depletion from island arc tholeiites (IAT) to boninites. Therefore, a fore-arc tectonic setting seems likely for the generation of the crustal rocks from the Tekirova (Antalya) ophiolite in the southern branch of Neotethys during the Late Cretaceous. The OIB-type alkaline isotropic gabbros are thought to have resulted from either (1) a late-stage magmatic activity fed by melts that originated within an asthenospheric window due to slab break-off or (2) subduction of a ridge system which generated OIB source across the asthenospheric window that has been no influence of fluids from the subducted slab into the overlying mantle wedge, shortly before the emplacement of the Tekirova (Antalya) ophiolite onto the Tauride platform. © Springer-Verlag 2007.FBE2000D12 TÜBA-GEBİP/2003-111Acknowledgments This work is a part of PhD study of Utku Bag^cı. Financial support from the C¸ ukurova University Research Foundation (Project No: FBE2000D12) is gratefully acknowledged. We would like to thank Fabio Capponi for performing major and trace element analyses. We are grateful to Prof Michel Delaloye for thoughtful discussions on evolution of the eastern Mediterranean ophiolites. Osman Parlak gratefully acknowledges the financial support of TÜBA (Turkish Academy of Sciences) in the framework of the Young Scientist Award Program (TÜBA-GEBİP/2003-111). We are grateful to Profs Alastair Robertson for the valuable scientific comments that improved the quality of the present manuscript and Wolf-Christian Dullo for editorial handling

    Geochemistry and tectonic significance of the ophiolitic rocks of the Yarpuz-Kaypak (Amanoslar, Osmaniye) area

    No full text
    Yarpuz-Kaypak (Osmaniye) region, located in Amanos Mountains, contains harzburgitic tectonites and mafic cumulates. The tectonites are represented by serpantinized harzburgites, whereas the cumulates are characterized by gabbronorite and gabbro compositions. The crystallization order within the cumulates is clinopyroxene, orthopyroxene plagioclase and amphibole. The major element compositions of the tectonites and cumulate rocks are consistent with formation in an arc-related tectonic setting. Trace element concentrations of these rocks exhibit large ion litophile element enrichments. Both geochemical and petrographic evidence suggest that the tectonite and cumulate rocks from the Yarpuz-Kaypak (Osmaniye) region represent the remnants of an oceanic lithosphere that formed in a supra-subduction zone tectonic setting during the closure of the Southern Neotethyan ocean and emplaced onto the northern margin of the Arabian platform in Late Cretaceous. © 2019 General Directorate of Mineral Research and Exploration (MTA). All rights reserved

    Whole-rock and mineral chemistry of cumulates from the Kizildag (Hatay) ophiolite (Turkey): Clues for multiple magma generation during crustal accretion in the southern Neotethyan ocean

    No full text
    The late Cretaceous Kizildag ophiolite forms one of the best exposures of oceanic lithospheric remnants of southern Neotethys to the north of the Arabian promontory in Turkey. The ultramafic to mafic cumulate rocks, displaying variable thickness (ranging from 165 to 700 m), are ductiley deformed, possibly in response to syn-magmatic extension during sea-floor spreading and characterized by wehrlite, olivine gabbro, olivine gabbronorite and gabbro. The gabbroic cumulates have an intrusive contact with the wehrlitic cumulates in some places. The crystallization order of the cumulus and intercumulus phases is olivine (Fo86-77)±chromian spinel, clinopyroxene (Mg#92-76), plagioclase (An95-83), orthopyroxene(Mg#87-79). The olivine, clinopyroxene, orthopyroxene and plagioclase in ultramafic and mafic cumulate rocks seem to have similar compositional range. This suggests that these rocks cannot represent a simple crystal line of descent. Instead the overlapping ranges in mineral compositions in different rock types suggest multiple magma generation during crustal accretion for the Kizildag ophiolite. The presence of high Mg# of olivine, clinopyroxene, orthopyroxene, and the absence of Ca-rich plagioclase as an early fractionating phase co-precipitating with forsteritic olivine, suggest that the Kizildag plutonic suite is not likely to have originated in a mid-ocean ridge environment. Instead the whole-rock and mineral chemistry of the cumulates indicates their derivation from an island arc tholeiitic (IAT) magma. All the evidence indicates that the Kizildag ophiolite formed along a slow-spreading centre in a fore-arc region of a suprasubduction zone tectonic setting. © 2005 The Mineralogical Society
    corecore