10,015 research outputs found
Enhancing Big Data Security with Collaborative Intrusion Detection
As an asset of Cloud computing, big data is now changing our business models and applications. Rich information residing in big data is driving business decision making to be a data-driven process. Its security and privacy, however, have always been a concern of the owners of the data. The security and privacy could be strengthened via securing Cloud computing environments. This requires a comprehensive security solution from attack prevention to attack detection. Intrusion Detection Systems (IDSs) are playing an increasingly important role within the realm of a set of network security schemes. In this article, we study the vulnerabilities in Cloud computing and propose a collaborative IDS framework to enhance the security and privacy of big data
Hydrokinetic pancreatic function and insulin secretion are moduled by Cl− uniporter Slc26a9 in mice
Aim: Slc26a9 is a member of the Slc26 multifunctional anion transporter family. Polymorphisms in Slc26a9 are associated with an increased incidence of meconium ileus and diabetes in cystic fibrosis patients. We investigated the expression of Slc26a9 in the murine pancreatic ducts, islets and parenchyma, and elucidated its role in pancreatic ductal electrolyte and fluid secretion and endocrine function. Methods: Pancreatic Slc26a9 and CFTR mRNA expression, fluid and bicarbonate secretion were assessed in slc26a9−/− mice and their age- and sex-matched wild-type (wt) littermates. Glucose and insulin tolerance tests were performed. Results: Compared with stomach, the mRNA expression of Slc26a9 was low in pancreatic parenchyma, 20-fold higher in microdissected pancreatic ducts than parenchyma, and very low in islets. CFTR mRNA was ~10 fold higher than Slc26a9 mRNA expression in each pancreatic cell type. Significantly reduced pancreatic fluid secretory rates and impaired glucose tolerance were observed in female slc26a9−/− mice, whereas alterations in male mice did not reach statistical significance. No significant difference was observed in peripheral insulin resistance in slc26a9−/− compared to sex- and aged-matched wt controls. In contrast, isolated slc26a9−/− islets in short term culture displayed no difference in insulin content, but a significantly reduced glucose-stimulated insulin secretion compared to age- and sex-matched wt islets, suggesting that the impaired glucose tolerance in the absence of Slc26a9 expression these is a pancreatic defect. Conclusions: Deletion of Slc26a9 is associated with a reduction in pancreatic fluid secretion and impaired glucose tolerance in female mice. The results underline the importance of Slc26a9 in pancreatic physiology. © 2021 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society
Exploiting Radio Fingerprints for Simultaneous Localization and Mapping
Simultaneous localization and mapping (SLAM) is paramount for unmanned
systems to achieve self-localization and navigation. It is challenging to
perform SLAM in large environments, due to sensor limitations, complexity of
the environment, and computational resources. We propose a novel approach for
localization and mapping of autonomous vehicles using radio fingerprints, for
example WiFi (Wireless Fidelity) or LTE (Long Term Evolution) radio features,
which are widely available in the existing infrastructure. In particular, we
present two solutions to exploit the radio fingerprints for SLAM. In the first
solution-namely Radio SLAM, the output is a radio fingerprint map generated
using SLAM technique. In the second solution-namely Radio+LiDAR SLAM, we use
radio fingerprint to assist conventional LiDAR-based SLAM to improve accuracy
and speed, while generating the occupancy map. We demonstrate the effectiveness
of our system in three different environments, namely outdoor, indoor building,
and semi-indoor environment.Comment: This paper has been accepted by IEEE Pervasive Computing with DOI:
10.1109/MPRV.2023.327477
The phase relation between sunspot numbers and soft X-ray flares
To better understand long-term flare activity, we present a statistical study
on soft X-ray flares from May 1976 to May 2008. It is found that the smoothed
monthly peak fluxes of C-class, M-class, and X-class flares have a very
noticeable time lag of 13, 8, and 8 months in cycle 21 respectively with
respect to the smoothed monthly sunspot numbers. There is no time lag between
the sunspot numbers and M-class flares in cycle 22. However, there is a
one-month time lag for C-class flares and a one-month time lead for X-class
flares with regard to sunspot numbers in cycle 22. For cycle 23, the smoothed
monthly peak fluxes of C-class, M-class, and X-class flares have a very
noticeable time lag of one month, 5 months, and 21 months respectively with
respect to sunspot numbers. If we take the three types of flares together, the
smoothed monthly peak fluxes of soft X-ray flares have a time lag of 9 months
in cycle 21, no time lag in cycle 22 and a characteristic time lag of 5 months
in cycle 23 with respect to the smoothed monthly sunspot numbers. Furthermore,
the correlation coefficients of the smoothed monthly peak fluxes of M-class and
X-class flares and the smoothed monthly sunspot numbers are higher in cycle 22
than those in cycles 21 and 23. The correlation coefficients between the three
kinds of soft X-ray flares in cycle 22 are higher than those in cycles 21 and
23. These findings may be instructive in predicting C-class, M-class, and
X-class flares regarding sunspot numbers in the next cycle and the physical
processes of energy storage and dissipation in the corona.Comment: 8 pages, 3 figures, Accepted for publication in Astrophysics & Space
Scienc
Fragment Production in Non-central Collisions of Intermediate Energy Heavy Ions
The defining characteristics of fragment emission resulting from the
non-central collision of 114Cd ions with 92Mo target nuclei at E/A = 50 MeV are
presented. Charge correlations and average relative velocities for mid-velocity
fragment emission exhibit significant differences when compared to standard
statistical decay. These differences associated with similar velocity
dissipation are indicative of the influence of the entrance channel dynamics on
the fragment production process
A survey of cost-sensitive decision tree induction algorithms
The past decade has seen a significant interest on the problem of inducing decision trees that take account of costs of misclassification and costs of acquiring the features used for decision making. This survey identifies over 50 algorithms including approaches that are direct adaptations of accuracy based methods, use genetic algorithms, use anytime methods and utilize boosting and bagging. The survey brings together these different studies and novel approaches to cost-sensitive decision tree learning, provides a useful taxonomy, a historical timeline of how the field has developed and should provide a useful reference point for future research in this field
Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating
In this study, we designed a novel drug-eluting coating for vascular implants consisting of a core coating of the anti-proliferative drug docetaxel (DTX) and a shell coating of the platelet glycoprotein IIb/IIIa receptor monoclonal antibody SZ-21. The core/shell structure was sprayed onto the surface of 316L stainless steel stents using a coaxial electrospray process with the aim of creating a coating that exhibited a differential release of the two drugs. The prepared stents displayed a uniform coating consisting of nano/micro particles. In vitro drug release experiments were performed, and we demonstrated that a biphasic mathematical model was capable of capturing the data, indicating that the release of the two drugs conformed to a diffusion-controlled release system. We demonstrated that our coating was capable of inhibiting the adhesion and activation of platelets, as well as the proliferation and migration of smooth muscle cells (SMCs), indicating its good biocompatibility and anti-proliferation qualities. In an in vivo porcine coronary artery model, the SZ-21/DTX drug-loaded hydrophobic core/hydrophilic shell particle coating stents were observed to promote re-endothelialization and inhibit neointimal hyperplasia. This core/shell particle-coated stent may serve as part of a new strategy for the differential release of different functional drugs to sequentially target thrombosis and in-stent restenosis during the vascular repair process and ensure rapid re-endothelialization in the field of cardiovascular disease
The South Asian genome
Genetics of disease
Microarrays
Variant genotypes
Population genetics
Sequence alignment
AllelesThe genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world's population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians.Whole genome sequencing to discover genetic variants underlying type-2 diabetes, coronary heart disease and related phenotypes amongst Indian Asians. Imperial College Healthcare NHS Trust cBRC 2011-13 (JS Kooner [PI], JC Chambers)
- …