490 research outputs found

    What neonatal complications should the pediatrician be aware of in case of maternal gestational diabetes?

    Get PDF
    In the epidemiologic context of maternal obesity and type 2 diabetes (T2D), the incidence of gestational diabetes has significantly increased in the last decades. Infants of diabetic mothers are prone to various neonatal adverse outcomes, including metabolic and hematologic disorders, respiratory distress, cardiac disorders and neurologic impairment due to perinatal asphyxia and birth traumas, among others. Macrosomia is the most constant consequence of diabetes and its severity is mainly influenced by maternal blood glucose level. Neonatal hypoglycemia is the main metabolic disorder that should be prevented as soon as possible after birth. The severity of macrosomia and the maternal health condition have a strong impact on the frequency and the severity of adverse neonatal outcomes. Pregestational T2D and maternal obesity significantly increase the risk of perinatal death and birth defects. The high incidence of maternal hyperglycemia in developing countries, associated with the scarcity of maternal and neonatal care, seriously increase the burden of neonatal complications in these countries

    Screening for cardiovascular disease risk factors beginning in childhood

    Get PDF
    Cardiovascular diseases (CVD) are the leading cause of death worldwide. Individual detection and intervention on CVD risk factors and behaviors throughout childhood and adolescence has been advocated as a strategy to reduce CVD risk in adulthood. The U.S. National Heart, Lung, and Blood Institute (NHLBI) has recently recommended universal screening of several risk factors in children and adolescents, at odds with several recommendations of the U.S. Services Task Force and of the U.K. National Screening committee. In the current review, we discuss the goals of screening for CVD risk factors (elevated blood pressure, abnormal blood lipids, diabetes) and behaviors (smoking) in children and appraise critically various screening recommendations. Our review suggests that there is no compelling evidence to recommend universal screening for elevated blood pressure, abnormal blood lipids, abnormal blood glucose, or smoking in children and adolescents. Targeted screening of these risk factors could be useful but specific screening strategies have to be evaluated. Research is needed to identify target populations, screening frequency, intervention, and follow-up. Meanwhile, efforts should rather focus on the primordial prevention of CVD risk factors and at maintaining a lifelong ideal cardiovascular health through environmental, policy, and educational approaches

    Screening for cardiovascular disease risk factors beginning in childhood

    Get PDF
    Cardiovascular diseases (CVD) are the leading cause of death worldwide. Individual detection and intervention on CVD risk factors and behaviors throughout childhood and adolescence has been advocated as a strategy to reduce CVD risk in adulthood. The U.S. National Heart, Lung, and Blood Institute (NHLBI) has recently recommended universal screening of several risk factors in children and adolescents, at odds with several recommendations of the U.S. Services Task Force and of the U.K. National Screening committee. In the current review, we discuss the goals of screening for CVD risk factors (elevated blood pressure, abnormal blood lipids, diabetes) and behaviors (smoking) in children and appraise critically various screening recommendations. Our review suggests that there is no compelling evidence to recommend universal screening for elevated blood pressure, abnormal blood lipids, abnormal blood glucose, or smoking in children and adolescents. Targeted screening of these risk factors could be useful but specific screening strategies have to be evaluated. Research is needed to identify target populations, screening frequency, intervention, and follow-up. Meanwhile, efforts should rather focus on the primordial prevention of CVD risk factors and at maintaining a lifelong ideal cardiovascular health through environmental, policy, and educational approaches

    UAVS TO ASSESS THE EVOLUTION OF EMBRYO DUNES

    Get PDF
    The balance of a coastal environment is particularly complex: the continuous formation of dunes, their destruction as a result of violent storms, the growth of vegetation and the consequent growth of the dunes themselves are phenomena that significantly affect this balance. This work presents an approach to the long-term monitoring of a complex dune system by means of Unmanned Aerial Vehicles (UAVs). Four different surveys were carried out between November 2015 and November 2016. Aerial photogrammetric data were acquired during flights by a DJI Phantom 2 and a DJI Phantom 3 with cameras in a nadiral arrangement. GNSS receivers in Network Real Time Kinematic (NRTK) mode were used to frame models in the European Terrestrial Reference System. Processing of the captured images consisted in reconstruction of a three-dimensional model using the principles of Structure from Motion (SfM). Particular care was necessary due to the vegetation: filtering of the dense cloud, mainly based on slope detection, was performed to minimize this issue. Final products of the SfM approach were represented by Digital Elevation Models (DEMs) of the sandy coastal environment. Each model was validated by comparison through specially surveyed points. Other analyses were also performed, such as cross sections and computing elevation variations over time. The use of digital photogrammetry by UAVs is particularly reliable: fast acquisition of the images, reconstruction of high-density point clouds, high resolution of final elevation models, as well as flexibility, low cost and accuracy comparable with other available techniques

    The magnitude of nephron number reduction mediates intrauterine growth-restriction-induced long term chronic renal disease in the rat. A comparative study in two experimental models.

    Get PDF
    Intrauterine growth restriction (IUGR) is a risk factor for hypertension (HT) and chronic renal disease (CRD). A reduction in the nephron number is proposed to be the underlying mechanism; however, the mechanism is debated. The aim of this study was to demonstrate that IUGR-induced HT and CRD are linked to the magnitude of nephron number reduction, independently on its cause. Systolic blood pressure (SBP), glomerular filtration rate (GFR), proteinuria, nephron number, and glomerular sclerosis were compared between IUGR offspring prenatally exposed to a maternal low-protein diet (9% casein; LPD offspring) or maternal administration of betamethasone (from E17 to E19; BET offspring) and offspring with a normal birth weight (NBW offspring). Both prenatal interventions led to IUGR and a similar reduction in birth weight. In comparison to NBW offspring, BET offspring had a severe nephron deficit (-50% in males and -40% in females, p < 0.01), an impaired GFR (-33%, p < 0.05), and HT (SBP+ 17 mmHg, p < 0.05). Glomerular sclerosis was more than twofold higher in BET offspring than in NBW offspring (p < 0.05). Long-term SBP, GFR, and glomerular sclerosis were unchanged in LPD offspring while the nephron number was moderately reduced only in males (-28% vs. NBW offspring, p < 0.05). In this study, the magnitude of nephron number reduction influences long term renal disease in IUGR offspring: a moderate nephron number is an insufficient factor. Extremely long-term follow-up of adults prenatally exposed to glucocorticoids are required

    Preterm Birth: Long Term Cardiovascular and Renal Consequences.

    Get PDF
    Cardiovascular and chronic kidney diseases are a part of noncommunicable chronic diseases, the leading causes of premature death worldwide. They are recognized as having early origins through altered developmental programming, due to adverse environmental conditions during development. Preterm birth is such an adverse factor. Rates of preterm birth increased in the last decades, however, with the improvement in perinatal and neonatal care, a growing number of preterm born subjects has now entered adulthood. Clinical and experimental evidence suggests that preterm birth is associated with impaired or arrested structural or functional development of key organs/systems making preterm infants vulnerable to cardiovascular and chronic renal diseases at adulthood. This review analyzes the evidence of such cardiovascular and renal changes, the role of perinatal and neonatal factors such as antenatal steroids and potential pathogenic mechanisms, including developmental programming and epigenetic alterations. Preterm born subjects are exposed to a significantly increased risk for altered cardiovascular and renal functions at young adulthood. Adequate, specific follow-up measures remain to be determined. While antenatal steroids have considerably improved preterm birth outcomes, repeated therapy should be considered with caution, as antenatal steroids induce long-term cardiovascular and metabolic alterations in animals' models and their involvement in the accelerated cellular senescence observed in human studies cannot be excluded

    Long-term impact of maternal high-fat diet on offspring cardiac health: role of micro-RNA biogenesis.

    Get PDF
    Heart failure is a worldwide leading cause of death. Diet and obesity are particularly of high concern in heart disease etiology. Gravely, altered nutrition during developmental windows of vulnerability can have long-term impact on heart health; however, the underlying mechanisms are poorly understood. In the understanding of the initiation of chronic diseases related to developmental exposure to environmental challenges, deregulations in epigenetic mechanisms including micro-RNAs have been proposed as key events. In this context, we aimed at delineating the role of micro-RNAs in the programming of cardiac alterations induced by early developmental exposure to nutritional imbalance. To reach our aim, we developed a human relevant model of developmental exposure to nutritional imbalance by maternally exposing rat to high-fat diet during gestation and lactation. In this model, offspring exposed to maternal high-fat diet developed cardiac hypertrophy and increased extracellular matrix depot compared to those exposed to chow diet. Microarray approach performed on cardiac tissue allowed the identification of a micro-RNA subset which was down-regulated in high-fat diet-exposed animals and which were predicted to regulate transforming growth factor-beta (TGFβ)-mediated remodeling. As indicated by in vitro approaches and gene expression measurement in the heart of our animals, decrease in DiGeorge critical region 8 (DGCR8) expression, involved in micro-RNA biogenesis, seems to be a critical point in the alterations of the micro-RNA profile and the TGFβ-mediated remodeling induced by maternal exposure to high-fat diet. Finally, increasing DGCR8 activity and/or expression through hemin treatment in vitro revealed its potential in the rescue of the pro-fibrotic phenotype in cardiomyocytes driven by DGCR8 decrease. These findings suggest that cardiac alterations induced by maternal exposure to high-fat diet is related to abnormalities in TGFβ pathway and associated with down-regulated micro-RNA processing. Our study highlighted DGCR8 as a potential therapeutic target for heart diseases related to early exposure to dietary challenge

    Long-Term Recovery After Endothelial Colony-Forming Cells or Human Umbilical Cord Blood Cells Administration in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy.

    Get PDF
    Neonatal hypoxic-ischemic encephalopathy (NHIE) is a dramatic perinatal complication, associated with poor neurological prognosis despite neuroprotection by therapeutic hypothermia, in the absence of an available curative therapy. We evaluated and compared ready-to-use human umbilical cord blood cells (HUCBC) and bankable but allogeneic endothelial progenitors (ECFC) as cell therapy candidate for NHIE. We compared benefits of HUCBC and ECFC transplantation 48 hours after injury in male rat NHIE model, based on the Rice-Vannucci approach. Based on behavioral tests, immune-histological assessment and metabolic imaging of brain perfusion using single photon emission computed tomography (SPECT), HUCBC, or ECFC administration provided equally early and sustained functional benefits, up to 8 weeks after injury. These results were associated with total normalization of injured hemisphere cerebral blood flow assessed by SPECT/CT imaging. In conclusion, even if ECFC represent an efficient candidate, HUCBC autologous criteria and easier availability make them the ideal candidate for hypoxic-ischemic cell therapy. Stem Cells Translational Medicine 2017;6:1987-1996

    Neonatal high protein intake enhances neonatal growth without significant adverse renal effects in spontaneous IUGR piglets.

    Get PDF
    In humans, early high protein (HP) intake has been recommended to prevent postnatal growth restriction and complications of intrauterine growth restriction (IUGR). However, the impact of such a strategy on the kidneys remains unknown, while significant renal hypertrophy, proteinuria, and glomerular sclerosis have been demonstrated in few experimental studies. The objective of this study was to evaluate the effects of a neonatal HP formula on renal structure in IUGR piglets. Spontaneous IUGR piglets were randomly allocated to normal protein (NP, javax.xml.bind.JAXBElement@68d5845e  = 10) formula or to HP formula (+50% protein content, javax.xml.bind.JAXBElement@3e768c15  = 10) up to day 28 after birth. Body weight, body composition, renal functions, and structure were assessed at the end of the neonatal period. While birth weights were similar, 28-day-old HP piglets were 18% heavier than NP piglets ( javax.xml.bind.JAXBElement@206b72ec < javax.xml.bind.JAXBElement@7f241a6d 0.01). Carcass protein content was 22% higher in HP than in NP offspring ( javax.xml.bind.JAXBElement@3b9786a3 < javax.xml.bind.JAXBElement@318ba3e0 0.01). Despite a HP intake, kidney weight and glomerular fibrosis were unaltered in HP piglets. Only a 20% increase in glomerular volume was noted in HP piglets ( javax.xml.bind.JAXBElement@4a0c5b2f  < 0.05) and restricted to the inner cortical area nephrons ( javax.xml.bind.JAXBElement@1524c771 = javax.xml.bind.JAXBElement@1281f9e8 0.03). Plasma urea/creatinine ratio and proteinuria were unchanged in HP piglets. In conclusion, neonatal HP feeding in IUGR piglets significantly enhanced neonatal growth and tissue protein deposition but mildly affected glomerular volume. It can be speculated that a sustained tissue protein anabolism in response to HP intake have limited single nephron glomerular hyperfiltration
    corecore