1,026 research outputs found

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    No full text
    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO2 yr−1. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set

    Long-Term Potentiation: One Kind or Many?

    Get PDF
    Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds

    Significance of Off-Center Rattling for Emerging Low-lying THz Modes in type-I Clathrates

    Full text link
    We show that the distinct differences of low-lying THz-frequency dynamics between type-I clathrates with on-center and off-center guest ions naturally follow from a theoretical model taking into account essential features of the dynamics of rattling guest ions. Our model analysis demonstrates the drastic change from the conventional dynamics shown by on-center systems to the peculiar dynamics of off-center systems in a unified manner. We claim that glass-like plateau thermal conductivities observed for off-center systems stem from the flattening of acoustic phonon dispersion in the regime |k|<|G|/4. The mechanism is applicable to other systems such as glasses or relaxers

    Periodic Travelling Waves in Dimer Granular Chains

    Full text link
    We study bifurcations of periodic travelling waves in granular dimer chains from the anti-continuum limit, when the mass ratio between the light and heavy beads is zero. We show that every limiting periodic wave is uniquely continued with respect to the mass ratio parameter and the periodic waves with the wavelength larger than a certain critical value are spectrally stable. Numerical computations are developed to study how this solution family is continued to the limit of equal mass ratio between the beads, where periodic travelling waves of granular monomer chains exist

    Sand in the wheels, or oiling the wheels, of international finance? : New Labour's appeal to a 'new Bretton Woods'

    Get PDF
    Tony Blair’s political instinct typically is to associate himself only with the future. As such, his explicit appeal to ‘the past’ in his references to New Labour’s desire to establish a “new Bretton Woods” is sufficient in itself to arouse some degree of analytical curiosity (see Blair 1998a). The fact that this appeal was made specifically in relation to Bretton Woods is even more interesting. The resonant image of the international economic context established by the original Bretton Woods agreements invokes a style and content of policy-making which Tony Blair typically dismisses as neither economically nor politically consistent with his preferred vision of the future (see Blair 2000c, 2001b)

    The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results

    No full text
    International audienceWe present a suite of new climate model experiment designs for the Geoengineering Model Intercompari-son Project (GeoMIP). This set of experiments, named Ge-oMIP6 (to be consistent with the Coupled Model Intercom-parison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more longwave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. This is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities

    Exploring the conformational dynamics of alanine dipeptide in solution subjected to an external electric field: A nonequilibrium molecular dynamics simulation

    Full text link
    In this paper, we investigate the conformational dynamics of alanine dipeptide under an external electric field by nonequilibrium molecular dynamics simulation. We consider the case of a constant and of an oscillatory field. In this context we propose a procedure to implement the temperature control, which removes the irrelevant thermal effects of the field. For the constant field different time-scales are identified in the conformational, dipole moment, and orientational dynamics. Moreover, we prove that the solvent structure only marginally changes when the external field is switched on. In the case of oscillatory field, the conformational changes are shown to be as strong as in the previous case, and non-trivial nonequilibrium circular paths in the conformation space are revealed by calculating the integrated net probability fluxes.Comment: 23 pages, 12 figure

    Complex lithium ion dynamics in simulated LiPO3 glass studied by means of multi-time correlation functions

    Full text link
    Molecular dynamics simulations are performed to study the lithium jumps in LiPO3 glass. In particular, we calculate higher-order correlation functions that probe the positions of single lithium ions at several times. Three-time correlation functions show that the non-exponential relaxation of the lithium ions results from both correlated back-and-forth jumps and the existence of dynamical heterogeneities, i.e., the presence of a broad distribution of jump rates. A quantitative analysis yields that the contribution of the dynamical heterogeneities to the non-exponential depopulation of the lithium sites increases upon cooling. Further, correlated back-and-forth jumps between neighboring sites are observed for the fast ions of the distribution, but not for the slow ions and, hence, the back-jump probability depends on the dynamical state. Four-time correlation functions indicate that an exchange between fast and slow ions takes place on the timescale of the jumps themselves, i.e., the dynamical heterogeneities are short-lived. Hence, sites featuring fast and slow lithium dynamics, respectively, are intimately mixed. In addition, a backward correlation beyond the first neighbor shell for highly mobile ions and the presence of long-range dynamical heterogeneities suggest that fast ion migration occurs along preferential pathways in the glassy matrix. In the melt, we find no evidence for correlated back-and-forth motions and dynamical heterogeneities on the length scale of the next-neighbor distance.Comment: 12 pages, 13 figure
    corecore