We study bifurcations of periodic travelling waves in granular dimer chains
from the anti-continuum limit, when the mass ratio between the light and heavy
beads is zero. We show that every limiting periodic wave is uniquely continued
with respect to the mass ratio parameter and the periodic waves with the
wavelength larger than a certain critical value are spectrally stable.
Numerical computations are developed to study how this solution family is
continued to the limit of equal mass ratio between the beads, where periodic
travelling waves of granular monomer chains exist