12,679 research outputs found

    Sediment-moss interactions on a temperate glacier: Falljökull, Iceland

    Get PDF
    Full text of this article can be found at: http://www.igsoc.org/annals/ Copyright IGS. DOI: 10.3189/172756408784700734We present the results of preliminary investigations of globular moss growth on the surface of Falljökull, a temperate outlet glacier of the Vatnajökull ice cap, southern Iceland. Supraglacial debris has provided a basis for moss colonization, and several large (>500 m2) patches of moss growth (Racomitrium spp.) are observed on the surface of the glacier. Each area of moss-colonized supraglacial debris shows a downslope increase in sphericity and moss cushion size and a decrease in percentage surface coverage of moss-colonized and bare clasts. It is suggested that moss growth on supraglacial debris allows preferential downslope movement of clasts through an associated increase in both overall mass and sphericity. Thermal insulation by moss cushions protects the underlying ice surface from melt, and the resulting ice pedestals assist in downslope sliding and toppling of moss cushions. The morphology and life cycle of supraglacial globular mosses is therefore not only closely linked to the presence and distribution of supraglacial debris, but also appears to assist in limited down-glacier transport of this debris. This research highlights both the dynamic nature of the interaction of mosses with supraglacial sedimentary systems and the need for a detailed consideration of their role within the wider glacial ecosystem.Peer reviewe

    Do early neural correlates of visual consciousness show the oblique effect? A binocular rivalry and event-related potential study

    Get PDF
    When dissimilar images are presented one to each eye, we do not see both images; rather, we see one at a time, alternating unpredictably. This is called binocular rivalry, and it has recently been used to study brain processes that correlate with visual consciousness, because perception changes without any change in the sensory input. Such studies have used various types of images, but the most popular have been gratings: sets of bright and dark lines of orthogonal orientations presented one to each eye. We studied whether using cardinal rival gratings (vertical, 0°, and horizontal, 90°) versus oblique rival gratings (left-oblique, –45°, and right-oblique, 45°) influences early neural correlates of visual consciousness, because of the oblique effect: the tendency for visual performance to be greater for cardinal gratings than for oblique gratings. Participants viewed rival gratings and pressed keys indicating which of the two gratings they perceived, was dominant. Next, we changed one of the gratings to match the grating shown to the other eye, yielding binocular fusion. Participants perceived the rivalry-to-fusion change to the dominant grating and not to the other, suppressed grating. Using event-related potentials (ERPs), we found neural correlates of visual consciousness at the P1 for both sets of gratings, as well as at the P1-N1 for oblique gratings, and we found a neural correlate of the oblique effect at the N1, but only for perceived changes. These results show that the P1 is the earliest neural activity associated with visual consciousness and that visual consciousness might be necessary to elicit the oblique effect

    EvoL: The new Padova T-SPH parallel code for cosmological simulations - I. Basic code: gravity and hydrodynamics

    Full text link
    We present EvoL, the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution. In this paper, the basic Tree + SPH code is presented and analysed, together with an overview on the software architectures. EvoL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formation on cluster, galactic and sub-galactic scales. EvoL is a fully Lagrangian self-adaptive code, based on the classical Oct-tree and on the Smoothed Particle Hydrodynamics algorithm. It includes special features such as adaptive softening lengths with correcting extra-terms, and modern formulations of SPH and artificial viscosity. It is designed to be run in parallel on multiple CPUs to optimize the performance and save computational time. We describe the code in detail, and present the results of a number of standard hydrodynamical tests.Comment: 33 pages, 49 figures, accepted on A&

    The Radio Afterglow and Host Galaxy of the Dark GRB 020819

    Full text link
    Of the fourteen gamma-ray bursts (GRBs) localized to better than 2' radius with the SXC on HETE-2, only two lack optical afterglow detections, and the high recovery rate among this sample has been used to argue that the fraction of truly dark bursts is ~10%. While a large fraction of earlier dark bursts can be explained by the failure of ground-based searches to reach appropriate limiting magnitudes, suppression of the optical light of these SXC dark bursts seems likely. Here we report the discovery and observation of the radio afterglow of GRB 020819, an SXC dark burst, which enables us to identify the likely host galaxy (probability of 99.2%) and hence the redshift (z=0.41) of the GRB. The radio light curve is qualitatively similar to that of several other radio afterglows, and may include an early-time contribution from the emission of the reverse shock. The proposed host is a bright R = 19.5 mag barred spiral galaxy, with a faint R ~ 24.0 mag "blob'' of emission, 3" from the galaxy core (16 kpc in projection), that is coincident with the radio afterglow. Optical photometry of the galaxy and blob, beginning 3 hours after the burst and extending over more than 100 days, establishes strong upper limits to the optical brightness of any afterglow or associated supernova. Combining the afterglow radio fluxes and our earliest R-band limit, we find that the most likely afterglow model invokes a spherical expansion into a constant-density (rather than stellar wind-like) external environment; within the context of this model, a modest local extinction of A_V ~ 1 mag is sufficient to suppress the optical flux below our limits.Comment: 7 pages, 2 figures. ApJ, in press. For more info on dark bursts, see http://www.astro.ku.dk/~pallja/dark.htm

    A fast stroboscopic spectral method for rotating systems in numerical relativity

    Full text link
    We present a numerical technique for solving evolution equations, as the wave equation, in the description of rotating astrophysical compact objects in comoving coordinates, which avoids the problems associated with the light cylinder. The technique implements a fast spectral matching between two domains in relative rotation: an inner spherical domain, comoving with the sources and lying strictly inside the light cylinder, and an outer inertial spherical shell. Even though the emphasis is placed on spectral techniques, the matching is independent of the specific manner in which equations are solved inside each domain, and can be adapted to different schemes. We illustrate the strategy with some simple but representative examples.Comment: 16 pages, 15 figure

    The generalization of the Regge-Wheeler equation for self-gravitating matter fields

    Full text link
    It is shown that the dynamical evolution of perturbations on a static spacetime is governed by a standard pulsation equation for the extrinsic curvature tensor. The centerpiece of the pulsation equation is a wave operator whose spatial part is manifestly self-adjoint. In contrast to metric formulations, the curvature-based approach to gravitational perturbation theory generalizes in a natural way to self-gravitating matter fields. For a certain relevant subspace of perturbations the pulsation operator is symmetric with respect to a positive inner product and therefore allows spectral theory to be applied. In particular, this is the case for odd-parity perturbations of spherically symmetric background configurations. As an example, the pulsation equations for self-gravitating, non-Abelian gauge fields are explicitly shown to be symmetric in the gravitational, the Yang Mills, and the off-diagonal sector.Comment: 4 pages, revtex, no figure

    Oxygen impurities in NiAl: Relaxation effects

    Get PDF
    We have used a full-potential linear muffin-tin orbital method to calculate the effects of oxygen impurities on the electronic structure of NiAl. Using the supercell method with a 16-atom supercell we have investigated the cases where an oxygen atom is substitutionally placed at either a nickel or an aluminum site. Full relaxation of the atoms within the supercell was allowed. We found that oxygen prefers to occupy a nickel site over an aluminum site with a site selection energy of 138 mRy (21,370 K). An oxygen atom placed at an aluminum site is found to cause a substantial relaxation of its nickel neighbors away from it. In contrast, this steric repulsion is hardly present when the oxygen atom occupies the nickel site and is surrounded by aluminum neighbors. We comment on the possible relation of this effect to the pesting degradation phenomenon (essentially spontaneous disintegration in air) in nickel aluminides.Comment: To appear in Phys. Rev. B (Aug. 15, 2001
    corecore