896 research outputs found

    Determinants of City Growth in Brazil

    Get PDF
    In this paper, we examine the determinants of Brazilian city growth between 1970 and 2000. We consider a model of a city, which combines aspects of standard urban economics and the new economic geography literatures. For the empirical analysis, we constructed a dataset of 123 Brazilian agglomerations, and estimate aspects of the demand and supply side as well as a reduced form specification that describes city sizes and their growth. Our main findings are that increases in rural population supply, improvements in inter-regional transport connectivity and education attainment of the labor force have strong impacts on city growth. We also find that local crime and violence, measured by homicide rates impinge on growth. In contrast, a higher share of private sector industrial capital in the local economy stimulates growth. Using the residuals from the growth estimation, we also find that cities who better administer local land use and zoning laws have higher growth. Finally, our policy simulations show that diverting transport investments from large cities towards secondary cities do not provide significant gains in terms of national urban performance.

    The lifespan method as a tool to study criticality in absorbing-state phase transitions

    Get PDF
    In a recent work, a new numerical method (the lifespan method) has been introduced to study the critical properties of epidemic processes on complex networks [Phys. Rev. Lett. \textbf{111}, 068701 (2013)]. Here, we present a detailed analysis of the viability of this method for the study of the critical properties of generic absorbing-state phase transitions in lattices. Focusing on the well understood case of the contact process, we develop a finite-size scaling theory to measure the critical point and its associated critical exponents. We show the validity of the method by studying numerically the contact process on a one-dimensional lattice and comparing the findings of the lifespan method with the standard quasi-stationary method. We find that the lifespan method gives results that are perfectly compatible with those of quasi-stationary simulations and with analytical results. Our observations confirm that the lifespan method is a fully legitimate tool for the study of the critical properties of absorbing phase transitions in regular lattices

    Semiclassical approach to fidelity amplitude

    Full text link
    The fidelity amplitude is a quantity of paramount importance in echo type experiments. We use semiclassical theory to study the average fidelity amplitude for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit --attained approximately by strongly chaotic systems-- and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us bridge the gap between both extreme cases.Comment: 10 pages, 9 figures. Version closest to published versio

    Reduction of Thermal Conductivity in Nanowires by Combined Engineering of Crystal Phase and Isotope Disorder

    Get PDF
    Nanowires are a versatile platform to investigate and harness phonon and thermal transport phenomena in nanoscale systems. With this perspective, we demonstrate herein the use of crystal phase and mass disorder as effective degrees of freedom to manipulate the behavior of phonons and control the flow of local heat in silicon nanowires. The investigated nanowires consist of isotopically pure and isotopically mixed nanowires bearing either a pure diamond cubic or a cubic-rhombohedral polytypic crystal phase. The nanowires with tailor-made isotopic compositions were grown using isotopically enriched silane precursors SiH, SiH, and SiH with purities better than 99.9%. The analysis of polytypic nanowires revealed ordered and modulated inclusions of lamellar rhombohedral silicon phases toward the center in otherwise diamond-cubic lattice with negligible interphase biaxial strain. Raman nanothermometry was employed to investigate the rate at which the local temperature of single suspended nanowires evolves in response to locally generated heat. Our analysis shows that the lattice thermal conductivity in nanowires can be tuned over a broad range by combining the effects of isotope disorder and the nature and degree of polytypism on phonon scattering. We found that the thermal conductivity can be reduced by up to ∼40% relative to that of isotopically pure nanowires, with the lowest value being recorded for the rhombohedral phase in isotopically mixed Si Si nanowires with composition close to the highest mass disorder (x ∼ 0.5). These results shed new light on the fundamentals of nanoscale thermal transport and lay the groundwork to design innovative phononic devices

    Impediments of green finance adoption system: Linking economy and environment

    Get PDF
    Environmental deregulation has become a severe concern for public health around the world. Increased pollution and ecological degradation have diverted attention towards adopting green practices, which can be possible if the sustainable green finance system is implemented in its true spirit. But previous studies reported certain factors affecting its implementation process, particularly in developing countries. This study aims to identify and quantify the barriers to adopting a green finance system. First, it identified twenty barriers through an extensive literature review and semi-structured interviews with experts in the fields of financial management, economics, and environmental sciences. Later, eighteen factors were finalized by the consensus of panel experts, which was further used to analyze their interrelationship through Interpretive Structural Modelling (ISM). Using MICMAC analysis, these barriers were categorized based on their diving-dependence powers. Finally, the conceptual ISM model is developed that provides a clear picture of the impediments to the green finance adoption system and their flow relationship among the identified barriers at different levels. The findings suggest that global level factors: lack of pressure from international organizations and unavailability of globally acceptable green criteria are critical to the prevalence of other factors that indicate its centrality to effectively implementing the green finance system. The developed model helps in designing, implementing, and promoting eco-friendly projects. It is also recommended that an appropriate framework is required to be developed at global, country, organizational, and individual levels to deal with the barriers of the green finance adoption system.info:eu-repo/semantics/publishedVersio

    Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater

    Get PDF
    Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very heterogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concentrations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ± 266 nm diameter were injected at low pressure (< 0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 × 3 × 9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post-injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions.This work was supported by H2020 EU project “Reground” Grant Agreement N◦ 641768. (www.reground-project.eu/). The authors gratefully acknowledge the valuable contribution of Sofia Credaro, who assisted in the proofreading and language editing of the manuscript. The authors thank the constructive comments by two anonymous reviewers

    Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater

    Get PDF
    Remediation of heavy metal-contaminated aquifers is a challenging process because they cannot be degraded by microorganisms. Together with the usually limited effectiveness of technologies applied today for treatment of heavy metal contaminated groundwater, this creates a need for new remediation technologies. We therefore developed a new treatment, in which permeable adsorption barriers are established in situ in aquifers by the injection of colloidal iron oxides. These adsorption barriers aim at the immobilization of heavy metals in aquifers groundwater, which was assessed in a large-scale field study in a brownfield site. Colloidal iron oxide (goethite) nanoparticles were used to install an in situ adsorption barrier in a very het-erogeneous, contaminated aquifer of a brownfield in Asturias, Spain. The groundwater contained high concen-trations of heavy metals with up to 25 mg/L zinc, 1.3 mg/L lead, 40 mg/L copper, 0.1 mg/L nickel and other minor heavy metal pollutants below 1 mg/L. High amounts of zinc (>900 mg/kg), lead (>2000 mg/kg), nickel (>190 mg/kg) were also present in the sediment. Ca. 1500 kg of goethite nanoparticles of 461 ±266 nm diameter were injected at low pressure (<0.6 bar) into the aquifer through nine screened injection wells. For each injection well, a radius of influence of at least 2.5 m was achieved within 8 h, creating an in situ barrier of 22 ×3 ×9 m. Despite the extremely high heavy metal contamination and the strong heterogeneity of the aquifer, successful immobilization of contaminants was observed in the tested area. The contaminant concentrations were strongly reduced immediately after the injection and the abatement of the heavy metals continued for a total post- injection monitoring period of 189 days. The iron oxide particles were found to adsorb heavy metals even at pH-values between 4 and 6, where low adsorption would have been expected. The study demonstrated the applicability of iron oxide nanoparticles for installing adsorption barriers for containment of heavy metals in contaminated groundwater under real conditions
    corecore