273 research outputs found

    Towards an analytical understanding of internal wave attractors

    Get PDF
    Time harmonic inviscid internal wave motions constrained to fully closed domains generically lead to singular velocity fields. In spite of this difficulty, several techniques exist to solve such internal wave boundary value problems. Recently it has been shown that for a domain with the shape of a trapezium, solutions can be written in terms of a double sine Fourier series. However, the solutions were found by a numerical technique and thus not all coefficients of the series are available. Unfortunately, for questions related e.g. to regularization of the inviscid {em singular} solutions, the knowledge of the asymptotic behavior of the spectrum for large wave numbers is essential. Here we discuss solutions of internal wave boundary value problems for which the spectra are known, at least asymptotically. We further describe shortcomings of the found solutions that need to be overcome in the future. Finally, we sketch applications of the solutions in the context of viscous energy dissipation

    On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM

    Full text link
    We present a calculation of the two-loop top-stop-gluino contributions to Higgs production via gluon fusion in the MSSM. By means of an asymptotic expansion in the heavy particle masses, we obtain explicit and compact analytic formulae that are valid when the Higgs and the top quark are lighter than stops and gluino, without assuming a specific hierarchy between the Higgs mass and the top mass. Being applicable to the heaviest Higgs scalar in a significant region of the MSSM parameter space, our results complement earlier ones obtained with a Taylor expansion in the Higgs mass, and can be easily implemented in computer codes to provide an efficient and accurate determination of the Higgs production cross section.Comment: 18 pages, 4 figure

    Temperature fluctuations in a changing climate: an ensemble-based experimental approach.

    Get PDF
    There is an ongoing debate in the literature about whether the present global warming is increasing local and global temperature variability. The central methodological issues of this debate relate to the proper treatment of normalised temperature anomalies and trends in the studied time series which may be difficult to separate from time-evolving fluctuations. Some argue that temperature variability is indeed increasing globally, whereas others conclude it is decreasing or remains practically unchanged. Meanwhile, a consensus appears to emerge that local variability in certain regions (e.g. Western Europe and North America) has indeed been increasing in the past 40 years. Here we investigate the nature of connections between external forcing and climate variability conceptually by using a laboratory-scale minimal model of mid-latitude atmospheric thermal convection subject to continuously decreasing 'equator-to-pole' temperature contrast DeltaT, mimicking climate change. The analysis of temperature records from an ensemble of experimental runs ('realisations') all driven by identical time-dependent external forcing reveals that the collective variability of the ensemble and that of individual realisations may be markedly different - a property to be considered when interpreting climate records

    Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass

    Full text link
    The inclusive Higgs production cross section from gluon fusion is calculated through NNLO QCD, including its top quark mass dependence. This is achieved through a matching of the 1/mtop expansion of the partonic cross sections to the exact large s-hat limits which are derived from k_T-factorization. The accuracy of this procedure is estimated to be better than 1% for the hadronic cross section. The final result is shown to be within 1% of the commonly used effective theory approach, thus confirming earlier findings.Comment: 28 pages, 14 figure

    Scalar Particle Contribution to Higgs Production via Gluon Fusion at NLO

    Get PDF
    We consider the gluon fusion production cross section of a scalar Higgs boson in models where fermion and scalar massive colored particles are present. We report analytic expressions for the matrix elements of gg→Hggg\to Hg, qqˉ→Hgq\bar{q}\to Hg, and qg→Hqqg\to Hq processes completing the calculation of the NLO QCD corrections in these extended scenarios. The formulas are written in a complete general case, allowing a flexible use for different theoretical models. Applications of our results to two different models are presented: i) a model in which the SM Higgs sector is augmented by a weak doublet scalar in the SU(Nc)SU(N_c) adjoint representation. ii) The MSSM, in the limit of neglecting the gluino contribution to the cross section.Comment: 20 pages, 5 figures. Minor changes. Refs. adde

    Heavy-quark mass effects in Higgs boson production at the LHC

    Full text link
    We study the impact of heavy-quark masses in Higgs boson production through gluon fusion at the LHC. We extend previous computations of the fully differential cross section and of the transverse momentum spectrum of the Higgs boson by taking into account the finite top- and bottom-quark masses up to O(alpha_S^3). We also discuss the issues arising when the heavy-quark mass is much smaller than the Higgs mass. Our results are implemented in updated versions of the HNNLO and HRes numerical programs.Comment: Minor modifications, results unchanged. Discussion on uncertainties added. Version published on JHE

    NLO QCD bottom corrections to Higgs boson production in the MSSM

    Get PDF
    We present a calculation of the two-loop bottom-sbottom-gluino contributions to Higgs boson production via gluon fusion in the MSSM. The calculation is based on an asymptotic expansion in the masses of the supersymmetric particles, which are assumed to be much heavier than the bottom quark and the Higgs bosons. We obtain explicit analytic results that allow for a straightforward identification of the dominant contributions in the NLO bottom corrections. We emphasize the interplay between the calculations of the masses and the production cross sections of the Higgs bosons, discussing sensible choices of renormalization scheme for the parameters in the bottom/sbottom sector.Comment: 25 pages, 4 figures. v2: references and two figures added, version published in JHE

    Quark masses in Higgs production with a jet veto

    Get PDF
    We study the impact of finite mass effects due to top and bottom loops in the jet-veto distribution for Higgs production. We discuss the appearance of non-factorizing logarithms in the region p t,veto ≳ m b . We study their numerical impact and argue that these terms can be treated as a finite remainder. We therefore detail our prescription for resumming the jet-vetoed cross section and for assessing its uncertainty in the presence of finite mass effects. Resummation for the jet-veto, including mass effects, has been implemented in the public code JetVHeto

    MSSM Higgs bosons associated with high-pT jets at hadron colliders

    Full text link
    The cross section for the production of the lightest neutral Higgs boson in association with a high-pT hadronic jet, calculated in the framework of the minimal supersymmetric standard model (MSSM), is presented. The expectations for the hadronic cross section at the Large Hadron Collider are discussed using reasonable kinematical cuts. In particular the contributions from superpartner loops to the cross section and their dependence on the parameters of the MSSM are investigated and found to be significant. Comparisons show that the production rate for h0 + jet in the MSSM can differ widely from the corresponding standard-model prediction.Comment: 20 page
    • …
    corecore