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Abstract. Time harmonic inviscid internal wave motions
constrained to fully closed domains generically lead to sin-
gular velocity fields. In spite of this difficulty, several tech-
niques exist to solve such internal wave boundary value prob-
lems. Recently it has been shown that for a domain with the
shape of a trapezium, solutions can be written in terms of
a double sine Fourier series. However, the solutions were
found by a numerical technique and thus not all coefficients
of the series are available. Unfortunately, for questions re-
lated e.g. to regularization of the inviscidsingularsolutions,
the knowledge of the asymptotic behavior of the spectrum
for large wave numbers is essential. Here we discuss solu-
tions of internal wave boundary value problems for which
the spectra are known, at least asymptotically. We further
describe shortcomings of the found solutions that need to be
overcome in the future. Finally, we sketch applications of the
solutions in the context of viscous energy dissipation.

1 Introduction

In the oceans, internal waves are generated mainly due to
tides, moving water across bottom topography (Vlasenko
et al., 2005). Such internal waves can travel large distances
but they also might become trapped between lateral and verti-
cal boundaries of the oceans. Extending the pioneering work
by Magaard(1968) to fully closed basins,Maas and Lam
(1995) showed that the characteristic curves of the hyper-
bolic internal wave equation converge towards a limit cycle,
referred to as “wave attractor”. Such a wave attractor marks
a singularity in the velocity field. From a mathematical point
of view, the non-existence of regular solutions for inviscid
internal wave boundary value problems (BVPs) reflects the
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fact that such problems are ill-posed: a hyperbolic equation
for the streamfunctionψ has to be combined with the elliptic
condition,ψ=0, along the boundary.

Several techniques exist that can solve internal wave BVPs
(Swart et al., 2007). However, the solutions obtained by most
of these methods cannot easily be written down in closed
form. Recently,Harlander and Maas(2007) showed that for
an ocean with a boundary geometry like a trapezium, solu-
tions in the form of Fourier series can be found. The coeffi-
cients of the series were found by applying a numerical col-
location technique. Subsequently, the authors showed that
such solutions are useful to understand dissipative damping.
However, for a full understanding, the asymptotic behavior
of the spectrum for large wave numbers is essential. From
numerical solutions we obtain important but incomplete in-
formation. So the question arises whether analytical wave
attractor solutions can be constructed, or at least solutions
that give information about the asymptotic behavior of the
coefficients.Ogilvie (2005) has shown for a tilted rectangle
geometry, that the total rate of energy dissipation is asymp-
totically independent of the viscosity. We think that such im-
portant findings might be investigated further with the help
of analytical wave attractor solutions.

The present paper is organized as follows. In Sect.2 we
briefly pose the mathematical problem we want to solve. In
Sect.3 we discuss the internal wave attractor solution for
a trapezium, obtained recently via a collocation technique.
The description of the technique is taken fromHarlander and
Maas(2007). Subsequently, in Sect.4 we construct a wave
attractor solution by using boundary data that (i) show focus-
ing, and for which (ii) the Fourier transform is known. With
this information we are able to find the correct Fourier coef-
ficients of wave attractor solutions in the limit of large wave
numbers. Finally, in Sect.5 we give conclusions and indicate
future work.
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2 The linearized 2D internal wave equation

The partial differential equation governing inviscid, linear,
time-harmonic, two dimensional internal wave motion is
well known (Vlasenko et al., 2005). By using the transforma-
tion y = ((N2 − ω2)/ω2)−1/2ŷ, where ŷ ist the horizontal
coordinate, N is the buoyancy frequency and ω the internal
wave frequency, it reads

ψyy − ψzz = 0, ψ = 0 at ∂M, (1)

where ψ is the streamfunction and z the vertical coordinate.
Note that by using the transformed coordinate y, the strati-
fication as well as the wave’s frequency are part of the hor-
izontal coordinate. M denotes the vertical lake/ocean cross
section and ∂M its boundary. A derivation of this bound-
ary value problem (BVP) from the Boussinesq equations can
be found in standard textbooks of physical oceanography, or
in the recent paper by Harlander and Maas (2007). We do
not repeat the derivation here but in the following section we
sketch briefly the collocation method that has been used by
Harlander and Maas (2007) to solve the BVP (1).

3 The boundary collocation method

In contrast to other methods to solve hyperbolic BVPs,
the boundary collocation method gives spectral information
about the solution. This can help to better understand typical
features of hyperbolic BVPs. In the following brief descrip-
tion of the boundary collocation method we follow closely
section 4.1 of Harlander and Maas (2007).

The domain M we begin with is a square with width π
(see Fig. 1). For this geometry, the BVP (1) is solved by

ψ =
∑

n

ψn =
∑

n

an sin ny sinnz, (2)

where the an are constant coefficients and n ∈ N . Next,
M is changed by replacing one vertical boundary by a slop-
ing wall. Fundamental intervals corresponding to a square
with a sloping sidewall are shown in Fig. 1 by two bold line
segments along the upper boundary (see Fig. 1). In these in-
tervals, ψz can be prescribed arbitrarily. This follows from
the fact that webs of characteristics (i.e., characteristics con-
nected at boundary reflections), launched from fundamen-
tal intervals have no reflection point within fundamental in-
tervals. In other words, any characteristic can uniquely be
mapped into one of the fundamental intervals. They can be
found by following the characteristic starting at the lower left
corner, and the characteristic starting at the bottom of the
slope. The latter characteristic shows one reflection at the
left boundary.

Obviously, the ψn of (2) for a square domain do no longer
satisfy the boundary conditions when a slope is introduced.
Nevertheless, we can still write the solution in the form (2).
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Fig. 1. The domain M , given by a square with a sloping sidewall
(dashed lines). The two fundamental intervals are shown by bold
solid lines along the upper boundary. The set of points where data
are prescribed are indicated by dotted lines along the fundamental
intervals and the lower part of the slope. In total there are N +J1 +
J2 data points. The wave attractor is shown by the dashed square.
The figure is adopted from Harlander and Maas (2007).

In practice, the series has to be truncated, then representing
an approximate solution to (1)

ψ ≈
N̄∑

n=1

an sin ny sinnz, (3)

where N̄ = N + J1 + J2 is the total number of discrete
points where data are specified (see dotted lines along the
lower part of the slope and above the two fundamental inter-
vals in Fig. 1). Along the slope it is demanded that ψ = 0,
in the two fundamental intervals we prescribe ψz . In discrete
form we obtain

N̄∑
n=1

an sin nys(i) sin nzs(i) = 0, i = 1, · · · , N, (4)

N̄∑
n=1

nan sin nyfk
(i)(−1)n = b(yfk

(i)), i = 1, · · · , Jk,(5)

where k = 1, 2, ys(i) are the grid points along the slope (with
zs(i) = αys(i)+ c, α and c constants), yf1(i) the grid points
along fundamental interval 1, and yf2(i) the grid points along
fundamental interval 2 (see Fig. 1). The vector b stands for
a prescribed ψz at the grid points along the fundamental in-
tervals. In matrix form (4)-(5) simply read

A · a = b, (6)

where A is a known N̄ × N̄ matrix, a is an unknown coef-
ficient vector of length N̄ , and b a known fundamental data
vector of length N̄ . To find the coefficient vector a we have
to invert A.

Fig. 1. The domainM, given by a square with a sloping side-
wall (dashed lines). The two fundamental intervals are shown by
bold solid lines along the upper boundary. The set of points where
data are prescribed are indicated by dotted lines along the funda-
mental intervals and the lower part of the slope. In total there are
N+J1+J2 data points. The wave attractor is shown by the dashed
square. The figure is adopted from Harlander and Maas (2007).

2 The linearized 2-D internal wave equation

The partial differential equation governing inviscid, linear,
time-harmonic, two dimensional internal wave motion is
well known (Vlasenko et al., 2005). By using the transfor-
mationy=((N2

−ω2)/ω2)−1/2ŷ, whereŷ ist the horizontal
coordinate,N is the buoyancy frequency andω the internal
wave frequency, it reads

ψyy − ψzz = 0, ψ = 0 at ∂M, (1)

whereψ is the streamfunction andz the vertical coordinate.
M denotes the vertical lake/ocean cross section and∂M its
boundary. Note that by using the transformed coordinatey,
the stratification as well as the wave’s frequency are part
of the horizontal coordinate. A derivation of this boundary
value problem (BVP) from the Boussinesq equations can be
found in standard textbooks of physical oceanography, or in
the recent paper byHarlander and Maas(2007). We do not
repeat the derivation here but in the following section we
sketch briefly the collocation method that has been used by
Harlander and Maas(2007) to solve the BVP (1).

3 The boundary collocation method

In contrast to other methods to solve hyperbolic BVPs,
the boundary collocation method gives spectral information
about the solution. This can help to better understand typical
features of hyperbolic BVPs. In the following brief descrip-
tion of the boundary collocation method we follow closely
Sect. 4.1 ofHarlander and Maas(2007).

The domainM we begin with is a square with widthπ
(see Fig.1). For this geometry, the BVP (1) is solved by

ψ =

∑
n

ψn =

∑
n

an sinny sinnz, (2)

where thean are constant coefficients andn∈N .
Next, M is changed by replacing one vertical boundary

by a sloping wall. Fundamental intervals corresponding to
a square with a sloping sidewall are shown in Fig.1 by two
bold line segments along the upper boundary (see Fig.1). In
these intervals,ψz can be prescribed arbitrarily. This follows
from the fact that webs of characteristics (i.e., characteris-
tics connected at boundary reflections), launched from fun-
damental intervals have no reflection point within fundamen-
tal intervals. In other words, any characteristic can uniquely
be mapped into one of the fundamental intervals. They can
be found by following the characteristic starting at the lower
left corner, and the characteristic starting at the bottom of the
slope. The latter characteristic shows one reflection at the
left boundary.

Obviously, theψn of (2) for a square domain do no longer
satisfy the boundary conditions when a slope is introduced.
Nevertheless, we can still write the solution in the form (2).
In practice, the series has to be truncated, then representing
an approximate solution to (1)

ψ ≈

N̄∑
n=1

an sinny sinnz, (3)

whereN̄=N+J1+J2 is the total number of discrete points
where data are specified (see dotted lines along the lower
part of the slope and above the two fundamental intervals
in Fig. 1). Along the slope it is demanded thatψ=0, in the
two fundamental intervals we prescribeψz. In discrete form
we obtain

N̄∑
n=1

an sinnys(i) sinnzs(i) = 0, i = 1, · · · , N, (4)

N̄∑
n=1

nan sinnyfk (i)(−1)n = b(yfk (i)), i=1, · · ·, Jk, (5)

wherek=1,2, ys(i) are the grid points along the slope (with
zs(i)=αys(i)+c, α andc constants),yf1(i) the grid points
along fundamental interval 1, andyf2(i) the grid points along
fundamental interval 2 (see Fig.1). The vectorb stands for a
prescribedψz at the grid points along the fundamental inter-
vals. In matrix form (4)–(5) simply read

A · a = b, (6)

whereA is a knownN̄×N̄ matrix, a is an unknown coeffi-
cient vector of lengthN̄ , andb a known fundamental data
vector of lengthN̄ . To find the coefficient vectora we have
to invertA.

Adv. Geosci., 15, 3–9, 2008 www.adv-geosci.net/15/3/2008/



U. Harlander: Understanding internal wave attractors 5

Figure2 displays an approximate solution of (1) for the
trapezium by using (3) and (6). The solution, shown in
Fig. 2a, agrees with the solution presented byMaas et al.
(1997) (their Fig. 1b). The location of the square shaped
wave attractor is clearly visible. We note in passing that
a zero level set exists aty=π . Consequently, the solu-
tion shown in Fig.2a is also valid mathematically for a
square with lengthπ , although, from a physical viewpoint,
an oblique sidewall with focusing reflections is necessary for
the existence of a wave attractor.

The spectrum, that is thean in (3), shown in the upper part
of Fig. 2b, clearly reflects the anti-symmetry of the solution.
All coefficients with an odd index are zero which guarantees
ψ=0 alongy=z=π , i.e. the anti-symmetry ofψ with re-
spect to the diagonal axis of the wave attractor. The first part
of the spectrum, determining the largest scales of the solu-
tion, shows rather irregular oscillations of large amplitude.
For larger wave numbers (n>30 say), the coefficients are or-
ganized as wave packets. They determine the scales resolved
close to the wave attractor. By removing single wave packets
from the spectrum, we remove some part of the fine structure
of the wave attractor but do not alter the gross structure of
the solution.

In the lower part of Fig.2b we plotteda2
m,m=2,4,6, · · ·,

together withm−2 in a log-log-scale. It appears that for
largerm, the coefficients converge faster to zero thanm−2.
However, as we will discuss below, this sudden increase in
convergency is very likely a numerical artefact.

4 Towards analytical solutions

Let us now try to construct an exact solution in the form

ψ =

∞∑
n=1

an sinny sinnz, (7)

that is a solution whereall coefficientsan are known and not
just N̄ . As was said above, such a solution automatically
fulfills the boundary conditionψ=0 for a square with length
π .

4.1 General idea

In contrast to the previous section we now giveψz along the
whole upper boundary and not just in the fundamental inter-
vals. Let us assume

ψz |z=π=

∞∑
n=1

n an sinny(−1)n = f (ỹ), (8)

whereỹ=y−Lp, andLp is the position of focusing. To find
the yet unknown coefficientsan, we multiply (12) by sinkỹ,
k=1,2, · · ·, and integrate from zero toπ∫ π

0

∞∑
n=1

n an(−1)n sinny sinkỹdỹ=
∫ π

0
f (ỹ) sinkỹ dỹ. (9)
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Fig. 2. Trapezium, a) streamfunction, b) coefficients an (top),
square of the even coefficients and n−2 (dashed line) in a log-log-
frame (bottom). The figure is adopted from Harlander and Maas
(2007).

Fig. 2 displays an approximate solution of (1) for the
trapezium by using (3) and (6). The solution, shown in
Fig. 2a, agrees with the solution presented by Maas et al.
(1997) (their Fig. 1B). The location of the square shaped
wave attractor is clearly visible. We note in passing that
a zero level set exists at y = π. Consequently, the so-
lution shown in Fig. 2a is also valid mathematically for a
square with length π, although, from a physical viewpoint,
an oblique sidewall with focusing reflections is necessary for
the existence of a wave attractor.

The spectrum, that is the an in (3), shown in the upper part
of Fig. 2b, clearly reflects the anti-symmetry of the solution.
All coefficients with an odd index are zero which guarantees
ψ = 0 along y = z = π, i.e. the anti-symmetry of ψ with
respect to the diagonal axis of the wave attractor. The first
part of the spectrum, determining the largest scales of the so-
lution, shows rather irregular oscillations of large amplitude.
For larger wave numbers (n > 30 say), the coefficients are
organized as wave packets. They determine the scales re-
solved close to the wave attractor. By removing single wave
packets from the spectrum, we remove some part of the fine
structure of the wave attractor but do not alter the gross struc-
ture of the solution.

In the lower part of Fig. 2b we plotted a2
m, m = 2, 4, 6, · · ·,

together with m−2 in a log-log-scale. It appears that for
larger m, the coefficients converge faster to zero than m−2.
However, as we will discuss below, this sudden increase in
convergency is very likely a numerical artefact.

4 Towards analytical solutions

Let us now try to construct an exact solution in the form

ψ =
∞∑

n=1

an sin ny sinnz, (7)

that is a solution where all coefficients an are known and
not just N̄ . As was said above, such a solution automatically
fulfills the boundary condition ψ = 0 for a square with length
π.

4.1 General idea

In contrast to the previous section we now give ψz along the
whole upper boundary and not just in the fundamental inter-
vals. Let us assume

ψz |z=π=
∞∑

n=1

nan sin ny(−1)n = f(ỹ), (8)

where ỹ = y−Lp, and Lp is the position of focusing. To find
the yet unknown coefficients an, we multiply (12) by sin k ỹ,
k = 1, 2, · · ·, and integrate from zero to π

∫ π

0

∞∑
n=1

n an(−1)n sin ny sin kỹ dỹ =

∫ π

0

f(ỹ) sin kỹ dỹ. (9)

Evaluating the left-hand side we use the fact that for n 6= k
∫ π

0

sinny sin kỹdỹ = 0, (10)

and for n = k

2
π

∫ π

0

sin ny sin kỹ dỹ =
{

0 : n = 2m− 1
(−1)n/2 : n = 2m

, (11)

where m = 1, 2, · · ·. Finally, we choose the data f(ỹ) such
that (i), we get continuous focusing towards the focusing
point Lp, (ii), the integral on the right-hand side (9) can be
evaluated analytically. Two examples of possible choices for
f(ỹ) are given below.

Fig. 2. Trapezium,(a) streamfunction,(b) coefficientsan (top),
square of the even coefficients andn−2 (dashed line) in a log-log-
frame (bottom). The figure is adopted from Harlander and Maas
(2007).

Evaluating the left-hand side we use the fact that forn 6=k∫ π

0
sinny sinkỹdỹ = 0, (10)

and forn=k

2

π

∫ π

0
sinny sinkỹ dỹ ={

0 : n = 2m− 1
(−1)n/2 : n = 2m

, (11)

wherem=1,2, · · ·. Finally, we choose the dataf (ỹ) such
that (i), we get continuous focusing towards the focusing
pointLp, (ii), the integral on the right-hand side (9) can be
evaluated analytically. Two examples of possible choices for
f (ỹ) are given below.
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4.2 First example

The perhaps most simple data useful for our purpose are
given by

f(ỹ) = sin
a2

ỹ
, (12)

with Lp = π/2. The constant a2 = lπ2/2, l = 1, 2, · · ·,
follows from the boundary condition ψz(y) |z=π= f(ỹ) =
0 at y = 0, π. Note that for any internal wave frequency
(which is hidden in the y-coordinate, see section 2) we find
an infinite number of possible constants a. In some sense,
this reflects the known fact that the spectra of internal wave
BVPs are degenerate: for any frequency, an infinite number
of ’modes’ exists (in contrast to elliptic BVPs, where for any
eigenfrequency we have just one mode).

The anti-symmetry of f(ỹ) immediately implies

an = 0, n = 2m− 1, m = 1, 2, · · · . (13)

To find the an with the even indices we use the sine Fourier
transform of f(ỹ), reading (Erdélyi et al., 1954)
∫ ∞

0

sin
a2

ỹ
sin kỹ dỹ =

1
2
πak−1/2J1(2ak1/2), (14)

where J1(·) is a member of the Bessel functions of the first
kind (J±ν(·), ν = 1). It can be shown that in the limit k →
∞
∫ ∞

0

sin
a2

ỹ
sin kỹ dỹ → 2

∫ π

0

sin
a2

ỹ
sin kỹ dỹ. (15)

Inserting (10), (11), (14), and (15) into (9), and using the
anti-symmetry (13), we find for n →∞

an ∼
{

0 : n = 2m− 1
(−1)n/2n−3/2J1(2an1/2) : n = 2m

. (16)

With formula (16) we have found the asymptotically correct
spectrum of a focusing solution. Note that its decay is much
faster than the decay of the spectrum found numerically for
the trapezium (Fig. 2b), that decays approximately with n−2.

Before we discuss a second example we note that (15)
holds approximately even for rather small k. Fig. 3 shows
the difference between the left-hand- and right-hand-side of
(15) for l = 1, 2, 3 (thick, dashed, thin line). For l = 1, e.g.,
the error decays faster than 1/k.

4.3 Second example

Let us now consider data that imply a similar spectral decay
than the trapezium shown in Fig. 2. A proper choice is

f(ỹ) =
1
ỹ2

sin
a2

ỹ
. (17)

For this function, the sine Fourier transform reads (Erdélyi
et al., 1954)
∫ ∞

0

1
ỹ2

sin
a2

ỹ
sin kỹ dỹ =

1
2
πa−1k1/2J1(2ak1/2). (18)
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Fig. 3. Difference between the left-hand- and right-hand-side of
(15) as a function of the wavenumber for l = 1, 2, 3 (thick, dashed,
thin line), where a2 = lπ2/2.

Again we use the fact that for k →∞
∫ ∞

0

1
ỹ2

sin
a2

ỹ
sin kỹ dỹ → 2

∫ π

0

1
ỹ2

sin
a2

ỹ
sin kỹ dỹ. (19)

Compared to the first example, the convergency of (19) is
even faster than 1/k. The spectrum for n →∞ reads

an ∼
{

0 : n = 2m− 1
(−1)n/2n−1/2J1(2an1/2) : n = 2m

. (20)

It is instructive to compute the solution (7) by using all co-
efficients (20) and not just the one with large index n. Note
that we still get an analytical solution of (1) for a square do-
main with length π. However, away from the attractor, the
data deviate from f(ỹ) given in (17). Fig. 4a shows the solu-
tion for a = π/

√
2, obtained by inserting (20) into (7). The

solution as well as the spectrum shown in Fig. 4b shows a
striking similarity to the solution for the trapezium (Fig. 2).
The spectrum decays roughly with 1/n2 and again we find
a series of wave packets, responsible for the wave attractor’s
fine structure. Note however that the center region of the at-
tractor cannot be visualized properly. Due to the truncation
of the spectrum, the fine structure is removed from the inner
part of the attractor. The same feature was already observed
in the solutions found via the boundary collocation method
(see last paragraph of section 3).

The attractor can visually be separated from the slowly
varying ’background field’ by plotting the integrand | ∇ψ |2
of the dissipation rate that reads for Rayleigh friction

D(t) =
∫

M

ν | ∇ψ |2 dy dz, (21)

where ν is the kinematic viscosity coefficient. This scale sep-
aration is demonstrated in Fig. 4c. It is obvious that the inner
region of the attractor, where dissipation becomes large (and
even singular), is removed by truncating the series (7). Seen
from a more physical point of view, Fig. 4c demonstrates
that in a viscous fluid, for which the fine structure close to

Fig. 3. Difference between the left-hand- and right-hand-side of
(15) as a function of the wavenumber forl=1,2,3 (thick, dashed,
thin line), wherea2

=lπ2/2.

4.2 First example

The perhaps most simple data useful for our purpose are
given by

f (ỹ) = sin
a2

ỹ
, (12)

with Lp=π/2. The constanta2
=lπ2/2, l=1,2, · · ·, fol-

lows from the boundary conditionψz(y) |z=π =f (ỹ)=0 at
y=0, π . Note that for any internal wave frequency (which
is hidden in the y-coordinate, see Sect.2) we find an infinite
number of possible constantsa. In some sense, this reflects
the known fact that the spectra of internal wave BVPs are de-
generate: for any frequency, an infinite number of “modes”
exists (in contrast to elliptic BVPs, where for any eigenfre-
quency we have just one mode).

The anti-symmetry off (ỹ) immediately implies

an = 0, n = 2m− 1, m = 1,2, · · · . (13)

To find thean with the even indices we use the sine Fourier
transform off (ỹ), reading (Erdélyi et al., 1954)∫

∞

0
sin

a2

ỹ
sinkỹ dỹ =

1

2
πak−1/2J1(2ak

1/2), (14)

whereJ1(·) is a member of the Bessel functions of the first
kind (J±ν(·), ν=1). It can be shown that in the limitk→∞∫

∞

0
sin

a2

ỹ
sinkỹ dỹ → 2

∫ π

0
sin

a2

ỹ
sinkỹ dỹ. (15)

Inserting (10), (11), (14), and (15) into (9), and using the
anti-symmetry (13), we find forn→∞

an ∼

{
0 : n = 2m− 1

(−1)n/2n−3/2J1(2an1/2) : n = 2m
. (16)

With formula (16) we have found the asymptotically correct
spectrum of a focusing solution. Note that its decay is much
faster than the decay of the spectrum found numerically for
the trapezium (Fig.2b), that decays approximately withn−2.

Before we discuss a second example we note that (15)
holds approximately even for rather smallk. Figure3 shows
the difference between the left-hand- and right-hand-side of
(15) for l=1,2,3 (thick, dashed, thin line). Forl=1, e.g., the
error decays faster than 1/k.

4.3 Second example

Let us now consider data that imply a similar spectral decay
than the trapezium shown in Fig.2. A proper choice is

f (ỹ) =
1

ỹ2
sin

a2

ỹ
. (17)

For this function, the sine Fourier transform reads (Erdélyi
et al., 1954)∫

∞

0

1

ỹ2
sin

a2

ỹ
sinkỹ dỹ =

1

2
πa−1k1/2J1(2ak

1/2). (18)

Again we use the fact that fork → ∞∫
∞

0

1

ỹ2
sin

a2

ỹ
sinkỹ dỹ → 2

∫ π

0

1

ỹ2
sin

a2

ỹ
sinkỹ dỹ. (19)

Compared to the first example, the convergency of (19) is
even faster than 1/k. The spectrum forn→∞ reads

an ∼

{
0 : n = 2m− 1

(−1)n/2n−1/2J1(2an1/2) : n = 2m
. (20)

It is instructive to compute the solution (7) by using all co-
efficients (20) and not just the one with large indexn. Note
that we still get an analytical solution of (1) for a square do-
main with lengthπ . However, away from the attractor, the
data deviate fromf (ỹ) given in (17). Figure4a shows the so-
lution for a=π/

√
2, obtained by inserting (20) into (7). The

solution as well as the spectrum shown in Fig.4b shows a
striking similarity to the solution for the trapezium (Fig.2).
The spectrum decays roughly with 1/n2 and again we find
a series of wave packets, responsible for the wave attractor’s
fine structure. Note however that the center region of the at-
tractor cannot be visualized properly. Due to the truncation
of the spectrum, the fine structure is removed from the inner
part of the attractor. The same feature was already observed
in the solutions found via the boundary collocation method
(see last paragraph of Sect.3).

The attractor can visually be separated from the slowly
varying “background field” by plotting the integrand| ∇ψ |

2

of the dissipation rate that reads for Rayleigh friction

D(t) =

∫
M

ν | ∇ψ |
2 dy dz, (21)

whereν is the kinematic viscosity coefficient. This scale sep-
aration is demonstrated in Fig.4c. It is obvious that the inner
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region of the attractor, where dissipation becomes large (and
even singular), is removed by truncating the series (7). Seen
from a more physical point of view, Fig.4c demonstrates that
in a viscous fluid, for which the fine structure close to the in-
ternal wave attractor is damped out, energy dissipation and
mixing will take place at a certain distance away from the
attractor. This distance depends not only on the size ofν, but
also on the geometry of the basin. E.g., for the trapezium,
the distance is smaller than for the case shown in Fig.4.

5 Conclusions

Singular flow components can be observed in freely prop-
agating wave beams of locally excited internal waves
(Chashechkin and Prihodko, 2007), as well as along the limit
cycles of trapped internal waves that are focused due to mul-
tiple reflections from oblique boundaries (Maas et al., 1997).
The limit cycles are called wave attractors and the solutions
of the corresponding internal wave boundary value problem
are referred to as wave attractor solutions. In the present pa-
per we have demonstrated that wave attractor solutions can
be constructed for a square with lengthπ by prescribingvon
Neumannboundary conditionsψx=f (x) (x is a substitute
for y or z) at one side of the square. The solutions are writ-
ten in the form of a double sine Fourier series. Forn→∞, the
coefficientsan, n=1,2, · · · of the solution converge towards
the coefficients of the sine Fourier transform off . In other
words, the “focusing” of the solution (i.e., the wave attractor)
corresponds with the focusing prescribed byf .

It was pointed out byHarlander and Maas(2007) that for
an understanding of the effect of viscosity on the structure of
the wave attractor, an analytic expression of the spectrum of
the attractor would be helpful. With (16) and (20) two exam-
ples of such expressions have come in. Under the assumption
that the time scale of the damping is much larger than the
time scale of the internal wave period,Harlander and Maas
(2007) found that the coefficients are damped by the factor
exp(−ν(

√
2n)2pt), wherep=1,2, · · · specifies the damping

characteristic (p=0, Rayleigh friction,p=1 momentum dif-
fusion,p>1, hyper-diffusion). With the expressions for the
coefficients the effect of dissipation can now be computed for
anyν, p, andn.

With the second example, we have discussed a solution
that shows a similar spectral decay than the solution for the
trapezium. It would be interesting to find dataf that lead
to a weaker damping. Such a solution would raise questions
about the convergency of the time mean dissipation rate. For
Rayleigh friction, e.g., the spectrum has to decay at least with
n−2 to obtain a finite time mean dissipation rate (Harlander
and Maas, 2007).

The major shortcoming of the solutions presented is that
we do not have an expression for the focusing part of the
boundary. Mathematically, the solutions are correct, how-
ever, from a physical point of view internal waves need to
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Fig. 4. Example 2, a) streamfunction ψ; b) coefficients an (top),
square of the even coefficients and n−2 (dashed line) in a log-log-
frame (bottom); c) | ∇ψ |2.

the internal wave attractor is damped out, energy dissipation
and mixing will take place at a certain distance away from
the attractor. This distance depends not only on the size of ν,
but also on the geometry of the basin. E.g., for the trapezium,
the distance is smaller than for the case shown in Fig. 4.

5 Conclusions

Singular flow components can be observed in freely prop-
agating wave beams of locally excited internal waves
(Chashechkin and Prihodko, 2007), as well as along the limit
cycles of trapped internal waves that are focused due to mul-
tiple reflections from oblique boundaries (Maas et al., 1997).
The limit cycles are called wave attractors and the solutions
of the corresponding internal wave boundary value problem
are referred to as wave attractor solutions. In the present pa-
per we have demonstrated that wave attractor solutions can
be constructed for a square with length π by prescribing von
Neumann boundary conditions ψx = f(x) (x is a substitute
for y or z) at one side of the square. The solutions are writ-
ten in the form of a double sine Fourier series. For n → ∞,
the coefficients an, n = 1, 2, · · · of the solution converge
towards the coefficients of the sine Fourier transform of f .
In other words, the ’focusing’ of the solution (i.e., the wave
attractor) corresponds with the focusing prescribed by f .

It was pointed out by Harlander and Maas (2007) that for
an understanding of the effect of viscosity on the structure
of the wave attractor, an analytic expression of the spectrum
of the attractor would be helpful. With (16) and (20) two
examples of such expressions have come in. Under the as-
sumption that the time scale of the damping is much larger
than the time scale of the internal wave period, Harlander
and Maas (2007) found that the coefficients are damped by
the factor exp(−ν(

√
2n)2pt), where p = 1, 2, · · · specifies

the damping characteristic (p = 0, Rayleigh friction, p = 1
momentum diffusion, p > 1, hyper-diffusion). With the ex-
pressions for the coefficients the effect of dissipation can now
be computed for any ν, p, and n.

With the second example, we have discussed a solution
that shows a similar spectral decay than the solution for the
trapezium. It would be interesting to find data f that lead
to a weaker damping. Such a solution would raise questions
about the convergency of the time mean dissipation rate. For
Rayleigh friction, e.g., the spectrum has to decay at least with
n−2 to obtain a finite time mean dissipation rate (Harlander
and Maas, 2007).

The major shortcoming of the solutions presented is that
we do not have an expression for the focusing part of the
boundary. Mathematically, the solutions are correct, how-
ever, from a physical point of view internal waves need to
reflect from an oblique or curved boundary to become fo-
cused. The solution shown in Fig. 2a holds for a square with
length π but there exists also a zero level of ψ that defines
the oblique side wall responsible for the wave focusing. The

Fig. 4. Example 2,(a) streamfunctionψ ; (b) coefficientsan (top),
square of the even coefficients andn−2 (dashed line) in a log-log-
frame (bottom);(c) | ∇ψ |

2.

reflect from an oblique or curved boundary to become fo-
cused. The solution shown in Fig.2a holds for a square with
lengthπ but there exists also a zero level ofψ that defines
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6 U. Harlander: Solution of internal wave attractor

shape of reflecting boundary
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Fig. 5. Enlargement of the wave attractor reflection region of Fig.
4a.

shape of the boundary segment that leads to focusing is im-
plicitly given by f but explicitly unknown. Fig. 5 shows a
magnification of the region of reflection at the wall y = π.
We highlighted two zero levels that seem to be connected at
(y, z) ≈ (2.6, 0.53). The red and green curve correspond to
flattened circles defined by

α(y − z − sr)± (α− 1)((y − y0)2 + (z − z0)2 − r2) = 0.

The parameter α defines the flatness of the circle. For
the red curve we use the plus sign and (α, s, r, y0, z0) =
(0.15, 3, π/4, π, 0), for the green curve the minus sign and
(α, s, r, y0, z0) = (0.4, 1, π/2, π/2, π/2). Closer to the at-
tractor, the zero level (shown by blue lines) can accurately be
described by hyperbolas

a2(z + z0)2 ± b2(y + y0)2 = a2b2.

For the upper part we use the positive sign and
(a, b, y0, z0) = (0.35, 1/2,−π/2,−π−a), for the lower part
the negative sign and (a, b, y0, z0) = (1/2, 0.35, a,−π/2).
Now we can approximately follow the sloping boundary, that
is responsible for the focusing: starting on the red curve at
z = 0 and following the curve until it is connected with the
green curve. Then switch to the green curve and follow it up-
ward towards the blue curve. Finally, follow the blue curve
until y = π is reached. Note first that the focusing rate is
decreasing the closer we are to the attractor. This is different
from the case with a linear slope (Harlander and Maas, 2007),
for which the focusing rate is constant. The space dependent
focusing is responsible for the rather broad not-resolved re-
gion surrounding the attractor (see Fig. 4). Focusing is al-
ready very strong at a distance of the attractor. Clearly, this

makes it difficult to resolve its neighboring region. Note fur-
ther that attractor solutions do not depend much on the pre-
cise shape of the focusing boundary as long as the frequency
is not at the edge of an attractor interval. Attractor solutions
at such critical frequencies have a large or small aspect ra-
tion (i.e. the parts of the attractor with positive and negative
slope have different length). Clearly, this does not hold for
the case considered. As long as the frequency is in the center
of an attractor interval, hyperbolic BVPs behave similar like
elliptic ones, that is small boundary deformations have just a
small impact on the solutions.

It should be noted that the strategy sketched in the present
paper might also be useful to find wave attractor solutions
for more general models. For instance, Harlander and Maas
(2007) constructed solutions of the Tricomi equation by us-
ing an expansion in terms of Airy functions that also form a
complete system of orthogonal functions.

A final note is concerned with the sharp drop in the spec-
trum of the trapezium for large n, shown in Fig. 2b. In order
to improve the boundary collocation method used to obtain
the spectrum, is is important to understand this feature. In
view of the spectrum of example two (Fig. 4b) that does
not show this feature, it is likely that the drop is a numerical
artefact that results from the truncation of the series (7) and
the subsequent numerical matrix inversion that gives the co-
efficients. However, lacking an analytical expression of the
spectrum or its asymptotic behavior, this conjecture is open
yet.
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for helpful comments improving the clarity of the paper.
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the focusing rate is constant. The space dependent focusing
is responsible for the rather broad not-resolved region
surrounding the attractor (see Fig.4). Focusing is already
very strong at a distance of the attractor. Clearly, this makes
it difficult to resolve its neighboring region. Note further
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small impact on the solutions.

It should be noted that the strategy sketched in the present
paper might also be useful to find wave attractor solutions
for more general models. For instance,Harlander and Maas
(2007) constructed solutions of the Tricomi equation by us-
ing an expansion in terms of Airy functions that also form a
complete system of orthogonal functions.

A final note is concerned with the sharp drop in the spec-
trum of the trapezium for largen, shown in Fig.2b. In order
to improve the boundary collocation method used to obtain
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view of the spectrum of example two (Fig.4b) that does not
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