31 research outputs found

    Topology and Signature Changes in Braneworlds

    Full text link
    It has been believed that topology and signature change of the universe can only happen accompanied by singularities, in classical, or instantons, in quantum, gravity. In this note, we point out however that in the braneworld context, such an event can be understood as a classical, smooth event. We supply some explicit examples of such cases, starting from the Dirac-Born-Infeld action. Topology change of the brane universe can be realised by allowing self-intersecting branes. Signature change in a braneworld is made possible in an everywhere Lorentzian bulk spacetime. In our examples, the boundary of the signature change is a curvature singularity from the brane point of view, but nevertheless that event can be described in a completely smooth manner from the bulk point of view.Comment: 26 pages, 8 figures, references and comments are added, minor revisions and a number of additional footnotes added, error corrected, minor corrections, to appear in Class. Quant. Gra

    Homothetic perfect fluid space-times

    Get PDF
    A brief summary of results on homotheties in General Relativity is given, including general information about space-times admitting an r-parameter group of homothetic transformations for r>2, as well as some specific results on perfect fluids. Attention is then focussed on inhomogeneous models, in particular on those with a homothetic group H4H_4 (acting multiply transitively) and H3H_3. A classification of all possible Lie algebra structures along with (local) coordinate expressions for the metric and homothetic vectors is then provided (irrespectively of the matter content), and some new perfect fluid solutions are given and briefly discussed.Comment: 27 pages, Latex file, Submitted to Class. Quantum Gra

    Developments in esophageal surgery for adenocarcinoma: a comparison of two decades

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to examine outcomes in patients undergoing esophageal resection for adenocarcinoma at our institution during a 20-year period and, in particular, to address temporal trends in long-term survival.</p> <p>Methods</p> <p>Out of 470 patients who underwent esophagectomy for malignancy between September 1985 and September 2005, a total number of 175 patients presented with esophageal adenocarcinoma. Patients enrolled in this study included AEG (adenocarcinoma of the esophagogastric junction) type I tumors only. Time trends were studied comparing two decades, 9/1985 to 9/1995 (DI) and 10/1995 to 9/2005 (DII).</p> <p>Results</p> <p>The overall survival was significantly more favourable in patients undergoing esophageal resection for adenocarcinoma in the recent time period (DII, 10/1995 to 9/2005) as compared to the early time period (DI, 9/1985 to 9/1995) (log rank test: p = 0.0329). Significant differences in the recent decade were seen based on lower ASA-classifications, earlier tumor stages, and the operative procedure with a higher frequency of transhiatal resections (p < 0.05). 30-day mortality improved from 8.3% to 3.1% during the 20-year time-interval, thus without statistical significance.</p> <p>Conclusion</p> <p>Based on our experience, overall survival is improving over time for adenocarcinoma of the esophagus. Factors that may play an important role in this trend include early diagnosis and improved patient selection through better preoperative staging, improved surgical technique with a tailored approach carefully evaluated by physiologic patient status, comorbidity and tumor extent.</p

    Exactly Soluble Sector of Quantum Gravity

    Full text link
    Cartan's spacetime reformulation of the Newtonian theory of gravity is a generally-covariant Galilean-relativistic limit-form of Einstein's theory of gravity known as the Newton-Cartan theory. According to this theory, space is flat, time is absolute with instantaneous causal influences, and the degenerate `metric' structure of spacetime remains fixed with two mutually orthogonal non-dynamical metrics, one spatial and the other temporal. The spacetime according to this theory is, nevertheless, curved, duly respecting the principle of equivalence, and the non-metric gravitational connection-field is dynamical in the sense that it is determined by matter distributions. Here, this generally-covariant but Galilean-relativistic theory of gravity with a possible non-zero cosmological constant, viewed as a parameterized gauge theory of a gravitational vector-potential minimally coupled to a complex Schroedinger-field (bosonic or fermionic), is successfully cast -- for the first time -- into a manifestly covariant Lagrangian form. Then, exploiting the fact that Newton-Cartan spacetime is intrinsically globally-hyperbolic with a fixed causal structure, the theory is recast both into a constraint-free Hamiltonian form in 3+1-dimensions and into a manifestly covariant reduced phase-space form with non-degenerate symplectic structure in 4-dimensions. Next, this Newton-Cartan-Schroedinger system is non-perturbatively quantized using the standard C*-algebraic technique combined with the geometric procedure of manifestly covariant phase-space quantization. The ensuing unitary quantum field theory of Newtonian gravity coupled to Galilean-relativistic matter is not only generally-covariant, but also exactly soluble.Comment: 83 pages (TeX). A note is added on the early work of a remarkable Soviet physicist called Bronstein, especially on his insightful contribution to "the cube of theories" (Fig. 1) -- see "Note Added to Proof" on pages 71 and 72, together with the new references [59] and [61

    Gravitational-wave research as an emerging field in the Max Planck Society. The long roots of GEO600 and of the Albert Einstein Institute

    Full text link
    On the occasion of the 50th anniversary since the beginning of the search for gravitational waves at the Max Planck Society, and in coincidence with the 25th anniversary of the foundation of the Albert Einstein Institute, we explore the interplay between the renaissance of general relativity and the advent of relativistic astrophysics following the German early involvement in gravitational-wave research, to the point when gravitational-wave detection became established by the appearance of full-scale detectors and international collaborations. On the background of the spectacular astrophysical discoveries of the 1960s and the growing role of relativistic astrophysics, Ludwig Biermann and his collaborators at the Max Planck Institute for Astrophysics in Munich became deeply involved in research related to such new horizons. At the end of the 1960s, Joseph Weber's announcements claiming detection of gravitational waves sparked the decisive entry of this group into the field, in parallel with the appointment of the renowned relativist Juergen Ehlers. The Munich area group of Max Planck institutes provided the fertile ground for acquiring a leading position in the 1970s, facilitating the experimental transition from resonant bars towards laser interferometry and its innovation at increasingly large scales, eventually moving to a dedicated site in Hannover in the early 1990s. The Hannover group emphasized perfecting experimental systems at pilot scales, and never developed a full-sized detector, rather joining the LIGO Scientific Collaboration at the end of the century. In parallel, the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) had been founded in Potsdam, and both sites, in Hannover and Potsdam, became a unified entity in the early 2000s and were central contributors to the first detection of gravitational waves in 2015.Comment: 94 pages. Enlarged version including new results from further archival research. A previous version appears as a chapter in the volume The Renaissance of General Relativity in Context, edited by A. Blum, R. Lalli and J. Renn (Boston: Birkhauser, 2020

    Cosmic magnetization in curved and Lorentz violating space–times

    Get PDF

    Die koloanale Anastomose - Kontinenz und Lebensqualität im Langzeitverlauf

    No full text

    A story of institutional misfit: Congress and U.S. economic sanctions

    No full text
    Parting from conventional studies on economic sanctions that look at the properties of the targeted state, this study focuses on the institutional origins of economic sanctions. I observe that most U.S. sanctions either originate from the legislative or the executive branch. Building on this observation, I argue and present evidence that the institutional origin of a U.S. sanction has a discernable eect on that sanction's duration. An institutional approach underpins the theory I develop to explain this dierence. The veto-point approach focuses on the institutional inertia bestowed upon foreign policy actions executed through law, and suggests that sanctions imposed as law should last longer than those carried out by executive order. Semi-parametric duration analysis conducted on the recently released TIES data conrm this expectation
    corecore