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Abstract The presence of the large-scale magnetic fields
is one of the greatest puzzles of contemporary cosmology.
The symmetries of the electromagnetic field theory combined
with the geometric structure of the FRW universe leads to an
adiabatic decay of the primordial magnetic fields. Due to this
rapid decay the residual large-scale magnetic field is astro-
physically unimportant. A common feature among many of
the proposed amplification mechanisms is the violation of
Lorentz symmetries. We introduce an amplification mecha-
nism within a Lorentz violating environment where we use
Finsler geometry as our theoretical background. The mecha-
nism is based on the adoption of a local anisotropic structure
that leads to modifications on the Ricci identities. Thus, the
wave-like equation of any vector source, including the mag-
netic field, is enriched by the Finslerian curvature theory.
In particular limits, the remaining seed field can be strong
enough to seed the galactic dynamo. In our analysis we also
develop the 1+3 covariant formalism for the 4-vector poten-
tial in curved space–times.

1 Introduction

Astrophysical observations indicate that magnetic fields are
widespread in the universe [1–7]. Their presence is confirmed
in almost every gravitationally bound system, ranging from
stars up to faraway galaxies and clusters of galaxies. The typ-
ical strength of the intergalactic magnetic field in the Milky
Way and other spiral and barred galaxies is of the order of
Bgalactic ∼ 10−6 G. In addition, clusters of galaxies are per-
meated by magnetic fields of almost the same intensity with
those in galaxies despite the scale difference. The fact that
gravitationally bound systems of different scale are perme-
ated by magnetic fields of the same strength indicates that
they might have common origin. Moreover, according to
recent analysis of the data from Fermi and Hess telescopes,
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there is evidence of coherent intergalactic magnetic fields
in low density regions with strength between ∼10−17 and
∼10−14 G [8–12]. Furthermore, there are strong indications
of large-scale magnetic field in filaments [13].

Up to a point, galactic magnetism can be explained as a
result of local astrophysical mechanisms. These rely on mag-
netohydrodynamic turbulence and on the differential rota-
tion of galaxies. In particular the differential rotation (galac-
tic dynamo) [14,15] can lead to the exponential amplifi-
cation of a seed field by a factor ∼e��t . The exponential
index � depends on the parameters of the particular dynamo
mechanism, which in the literature range between ∼0.45
and ∼5 Gyr−1 [16,17]. In addition, we expect that the seed
field for the galactic dynamo has been already amplified by
a factor 104, due to magnetic flux conservation during proto-
galaxy collapse. Putting these together, in optimistic scenar-
ios we need a seed field Bseed � 10−33 G while in the worst
case we get Bseed � 10−15 [18]. Whether such fields are of
primeval origin or have been generated during galaxy for-
mation remains unclear. However, the presence of magnetic
fields in remote protogalaxies and the lower limits retrieved
in intergalactic voids suggest that the primordial hypothesis
might be the case. At the same time, future observations of
the cosmic microwave background (CMB) may confirm the
cosmological origin of the intergalactic magnetism by report-
ing imprints on the CMB spectrum (for a recent review see
[19]).

The correlation length of magnetic fields generated dur-
ing the post-inflation era is restricted by the fact that physical
mechanisms must be causal. Hence, the coherence scale of
the seed field (e.g. generated in a phase transition [20,21])
must be subhorizon. Consequently, the correlation length
drops well below 10 kpc, which is typically the lowest
requirement of the dynamo mechanism. We can overcome
this obstacle by assuming some degree of turbulence, result-
ing to an increase of the coherence scale by an inverse cas-
cade process (see [22–24] and references therein). However,
this mechanism seems to require large amounts of magnetic
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helicity. An alternative mechanism to produce seed fields
correlated in scales 10 kpc–1 Mpc is inflation [25]. The lat-
ter relates microphysical processes to large-scale phenomena
through a rapid expansion of the cosmological fluid. Pre-
cisely, during de Sitter phase, electromagnetic quantum fluc-
tuations are exponentially stretched and cross outside the
horizon within a finite time interval. The drawback is that
magnetic fields decay adiabatically throughout the whole
cosmological history resulting in an astrophysically irrele-
vant magnetic intensity. This is a consequence of the con-
formal invariance of the electromagnetic field theory and of
the conformal flatness of the Friedmann–Robertson–Walker
(FRW) metric.

The aforementioned strength problem is confronted by
several proposed amplification mechanisms, operating within
or beyond the framework of conventional electromagnetism
(see for example [26–45]). The vector nature of the elec-
tromagnetic field guarantees that it couples to the curvature
of space–time through the Ricci identities [46–48]. Gen-
erally speaking, this clearly indicates that non-trivial geo-
metric structures directly affect the evolution of seed fields,
since the commutator of covariant derivatives is directly
related to the symmetries of space–time. Moreover, if we
depart from the safe harbor of conventional electrodynam-
ics there is a plethora of amplification mechanisms. Most of
these break the conformal invariance of the electromagnetic
action or extend the geometric structure of the physical man-
ifold [19,22–24]. It is well known that Lorentz invariance is
strongly related to the symmetries of the photon sector and
determines the local structure of space–time. In fact, a com-
mon feature among many of the inflationary amplification
mechanisms is Lorentz violation (LV). As noted in [49], if
Lorentz invariance is not an exact symmetry of nature we
expect that conformal invariance breaks down. In addition,
the Ricci identities are incompatible with many LV scenarios
and thus we expect that the electromagnetic wave equation
will be affected by the modified curvature theory.

It is widely believed that LV are candidate signals of an
underlying unified quantum gravity theory (QG). We expect
these to emerge in highly curved regions of space–time, i.e.
close to the classical singularities of general relativity (GR).
Thus, the primeval universe is a possible laboratory to test
LV through their imprints on the cosmological relics. In that
case, if galactic magnetism is of cosmological origin it may
carry information as regards QG physics, since the inflation-
ary era, where quantum fluctuations are generated, is some
orders of magnitude close to the Planck scale. In fact, there
are several studies on the connection between LV and the
survival of cosmological magnetic fields [50–56]. The basic
framework to build a realistic effective field theory for LV
in curved space–time is the standard-model-extension (SME)
[57,58], where particles follow Finslerian geodesics [59–61].
In a recent series of papers [62,63], the link between SME

and primordial magnetism was studied and estimations about
LV parameters were given with respect to the observed inter-
galactic magnetic fields.

In this paper, we study the wave equation of the electro-
magnetic field by dropping Lorentz invariance. Motivated by
the previous analysis we use Finsler geometry as our theo-
retical background to study LV (see for example [64–85]). In
addition, Finsler geometry is encountered in many branches
of QG like SME [59–61], Horava–Lifshitz gravity [86,87],
holographic fluids [88–90], D-particle space–time foam [91–
96], very special relativity [97,98], Galilean transformations
in curved space–time [99], bi-metric theories of gravity [100]
and plays a keynote role in the analog gravity program [101].
In Finsler geometry the local structure of GR is extended by
adopting a non-quadratic line element [102–105]. The devi-
ation from the local symmetries of GR is measured by a pure
geometric entity, the color (or equivalently non-quadraticity)
[102]. The color together with curvature determines the LV
kinematics. Due to the local anisotropy of the Finslerian man-
ifold the curvature theory is modified in alliance with the QG
phenomenology where we expect that LV are incompatible
with the Ricci and the Bianchi identities [106].

Central role to our analysis plays the 1+3 covariant formal-
ism [107,108] that we can extend in Finsler geometry [110].
Firstly, we develop the 4-vector potential representation of
electromagnetism in curved space–times and we discuss the
FRW inflationary scenario. This unfolds in a covariant way
the effect of curvature in the wave equation of the electro-
magnetic field. Then we generalize the metric structure of the
effective manifold by relaxing the local symmetries of GR.
As a consequence, the Ricci identities are modified and this
leads to a ‘colored’ (LV) generalization of the wave equa-
tion for the vector potential. Under particular conditions the
LV contribution can superadiabatically amplify the magnetic
quantum fluctuations. Finally, we provide order of magnitude
estimations for the residual magnetic intensity with respect
to the scale of inflation and the ‘Finslerity’ of space–time.

2 Finsler geometry

In a differentiable manifold M the metric structure is deter-
mined by a scalar function F(x, y) on the tangent bundle
T M, where xa is the position variable while ya is a tangent
vector field and the pairs (xa, ya) is a coordinate system of
T M over a local region of M. In Riemann geometry the
metric function F(x, y) is the norm of the ya-vector field
and gives back the length of the tangent y at a point x . It is
quadratic and homogeneous of first degree with respect to the
ya increments. The first property reflects that every tangent
space is Euclidian (in relativity Minkowski) and secures the
local flatness of the manifold. Therefore, it is directly related
to the SO4 local group of GR which implies the form of
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the metric function, F(x, y) = √
nab ya yb, where nab is the

Minkowski metric in an infinitesimal region of the Rieman-
nian space–time. The second property implies that the length
between two points is independent of the parametrization
of the connecting curve. Finsler geometry is just Riemann
geometry without the quadratic restriction on the metric func-
tion [111]. The infinitesimal flat neighborhood is replaced by
an anisotropic structure and this affects the local as well as
the global properties of the manifold.

The non-quadraticity is an extra geometric property
named the color [102]. The color, the curvature and the inter-
play between them determine the evolution of the Finslerian
congruences. Using the first-order homogeneity of the metric
function F(x, y) we can introduce the Finsler metric tensor

gab(x, y) = 1

2

∂2 F2

∂ya∂yb
. (1)

The y-dependence of the metric is a direct consequence of
the non-quadraticity. Note that Riemann geometry is a spe-
cial case and it is retrieved when we impose quadraticity
on the distance module. The dependence on the fiber coordi-
nates ya directly reflects the Lorentz violating structure of the
Finslerian space–time. They may be physically interpreted as
an arbitrary direction at each tangent space induced by the
breaking of Lorentz invariance (see for example [110,112]).
In fact, Finsler geometry is encountered in Lorentz violating
branches of quantum gravity [86–101] and also effectively
describes motion in anisotropic media [113,114]. Apart from
the metric tensor (1) there is another important geometric
entity, the Cartan tensor

Cabc = 1

2

∂gab

∂yc
, (2)

that measures departures from the quadratic measurement. In
other words, the tensor field (2) monitors the colorful ’mor-
phology’ of the Lorentz violating medium. When Cabc = 0
the manifold is white (Riemann) and the Lorentz symmetry
is restored. Noteworthy is the property of the Cartan tensor
that follows from the first-order homogeneity Cabc yc = 0.

In general, Finsler is a fiber space geometry since tensor
fields depend both on the position and on the y-increments
and follow the linear coordinate transformation law

Tab(x, y) = ∂ x̃ c

∂xa

∂ x̃d

∂xb
T̃cd(x̃, ỹ). (3)

The pair (x, y) is the element of support and introduces an
arbitrary direction on each tangent space. Hence, the parallel
displacement of a vector field Xa along a Finslerian congru-
ence ua(x, y) is given with respect to the supporting direction
ya [103]. In this setup, of particular interest are the Finsle-
rian congruences γ (τ), with tangent ua(x, y), along which

the absolute derivative of the supporting direction vanish,
namely Dya/dτ = 0. In that case, the parallel displacement
of a tensor field along the restricted bundle is similar with the
Riemannian limit. After imposing metricity, it is given with
respect to the Cartan connection by the following formula:

Ẋab...
...cd = Xab...

...cd|eue. (4)

The | operator is the only covariant derivative involved in the
kinematics for our restrained setup. For simplicity, in the rest
of our analysis we will focus in geodesic congruences along
which the parallel translation (4) is valid.

Consider that the average motion of matter is given by
the restricted first rank tensor field ua that is a time-like nor-
malized direction, uaua = −1. Then the affine parameter τ

is the proper time of the family of fundamental observers.
Hence, the parallel translation (4) stands for the time deriva-
tive along the fluid flow lines. Also, we can introduce the
projected covariant derivative on the instantaneous rest frame

Da Xbc...
...de = h f

ahb
ghc

hhi
d h j

e X gh...
...i j | f (5)

where we define the tensor hab = gab +uaub, which projects
orthogonal to the observers’ time-like flow. With the aid of the
projection tensor hab we can decompose space–time quanti-
ties to their time-like and space-like components. For exam-
ple, given a 4-vector field Xa its’ irreducible decomposition
withe respect to the ua time-like congruence is

Xa = (hab − uaub)Xb = −Xua + X a (6)

where X = Xaua is the time-like part and X a is the pro-
jection on the instantaneous rest space (for further details
see [107,110]). Using the time derivative (4) and the spatial
derivative (5) together with the Finslerian curvature theory
we can investigate the evolution of physical fields in a full
covariant way. When the space–time manifold is white (Rie-
mann), Cabc = 0, the above definitions reduce to the usual
GR operators.

3 Vector potential in GR’s 1+3 formalism

An equivalent formalism to construct the electromagnetic
field theory is the 4-potential representation. In the following
we develop the latter case using the Ehlers–Ellis 1+3 formal-
ism mainly in the Coulomb gauge. We use this method to
underline in a relatively straightforward way the role of Rie-
mann curvature in the photon sector. This will prove useful
in Sect. 4, where we will generalize the space–time manifold
to the Finslerian case. The physics of the photon sector are
encrypted in the 4-vector Aa , which corresponds to a U (1)

gauge field:
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Fab = ∇b Aa − ∇a Ab. (7)

The above tensor field remains invariant under any gauge
transformation, Aa → A′

a +∇a f . This property is responsi-
ble for the freedom of fixing the gauge in a convenient way
depending on the physical problem.

In studies of cosmological magnetic fields the most
widespread gauge is the Lorentz gauge, ∇a Aa = 0. The
last condition is written to its irreducible parts as

φ̇ + �φ − DaAa − u̇aAa = 0, (8)

where we use the definitions, � = Daua for the expansion
of the cosmic medium, φ = Aaua for the time-like part of
the 4-vector potential and Aa = h b

a Ab for the projection
on the instantaneous rest frame of the fundamental observer.
Nevertheless, we have not completely exhausted the gauge
freedom. Without loss of generality we can further introduce
the Coulomb sub-gauge, DaAa = 0. Then the last term of
the propagation relation (8) for the scalar potential is the only
source term. The latter term implies a time-varying scalar
potential even in the absence of expansion and reflects the
fact that we treat space–time as a single entity. This is an
analogous relativistic effect with the contribution of the 4-
acceleration in the Maxwell equations in the covariant 1+3
representation [115].

Consider a slightly magnetized FRW model where the
energy density of the electromagnetic field is a first-order
perturbation. Then, adopting the Coulomb gauge and keep-
ing up to first-order terms, relation (8) is consistent with the
condition, φ = 0. In that case, the electric field Ea = Fabub,
is written with respect to the 3-vector potential as

Ea = Ȧ〈a〉 + 1

3
�Aa, (9)

while the magnetic field Ba = εabc Fbc/2 is given by

Ba = −curlAa, (10)

where we define curlAa = εabcDbAc, while angle brackets
stand for the projection perpendicular to the bulk flow of
matter X〈a〉 = h b

a Xb.
Introducing the conformal time η = ∫ dt

a for the scale
factor of the medium, � = 3 ȧ

a , and using (9) and (10) we
retrieve the well-known relation B ∼ kηE , where k is the
wavenumber, while B and E are the average magnetic and
electric intensities.

The physical meaning of the 3-vector potential Aa is not
direct. However, using the relations (9) and (10) we can trans-
late it to the physically meaningful electric and magnetic
spatial vectors. The 4-vector potential satisfies the electro-
magnetic field equation

∇b Fab = Ja . (11)

In general, the time-like part of the previous relation corre-
sponds to the wave-like equation for the scalar part of Aa ,
while the projection to the rest space of the fundamental
observer gives back the wave-like equation for the 3-vector
potential Aa . In our slightly magnetized FRW background
and for the Coulomb gauge with φ = 0, the projection of
relation (11) along the observers flow-lines is a trivial iden-
tity, while the space-like part corresponds to the following
wave-like expression:

Ä〈a〉+�Ȧ〈a〉+1

3

(
�̇+ 2

3
�2

)
Aa −D2Aa +DbDaAb =−Ja,

(12)

where Ja = h b
a Jb is the spatial current. The last term in the

l.h.s. of (12) is directly related to the intrinsic curvature of the
instantaneous rest space. In particular, for vanishing vorticity
the instantaneous space is a Riemannian hypersurface and the
induced covariant derivative commutes in the usual way for
any 3-vector,

2D[cDb]Aa = RdabcAd (13)

where Rdabc is the intrinsic curvature of the spatial slice. The
intrinsic 3-curvatureRdabc is related to the space–time curva-
ture by projecting the 4-Ricci identities on the spatial hyper-
surfaces. Precisely, the spatial curvature is given with respect
to the projected 4-curvature through the Gauss–Godazzi for-
mula

Rdabc = h q
a h s

b h f
c h p

d Rqs f p − νacνbd + νadνbc, (14)

where νab = Dbua is the extrinsic curvature of the spatial
hypersurface and coincides with the relative flow tensor of
neighboring observers.

Using the three Ricci identity (13) and taking into account
the Coulomb gauge and the Ohm law Ja = σ Ea , the wave-
like relation (12) is reexpressed in conformal time as

Ã′′
a + aσ Ã′

a − a2D2Ãa + a2RbaÃb = 0 (15)

where we define the rescaled 3-vector potential Ãa = aAa ,
while the prime denotes differentiation with respect to the
conformal time η. The conductivity acts as a friction term
while the effect of spatial curvature depends on the type of
the 3-geometry. In the FRW case, the spatial sections are
hypersurfaces of constant curvature

Rabcd = K

a2 (hachbd − had hbc), K = 0,±1 (16)
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and relation (15) is written for the kth mode as

Ã′′
(k) + aσ Ã′

(k) + (k2 + 2K )Ã(k) = 0. (17)

In the l.h.s. of the above relation, when the conductivity
is high the friction term dominates over the last term. The
high conductivity limit implies Ã′

(k) → 0, which translates
through relation (9) to a vanishing electric field, while rela-
tion (10) gives back the adiabatic decay for the mean mag-
netic field, B ∝ a−2. Also, during inflation where the con-
ductivity is low we always retrieve an adiabatic decay for the
magnetic energy density1. The low conductivity is a good
approximation within an inflationary era since causally con-
nected regions grow rapidly beyond the horizon and the tem-
perature rapidly decays. On the other hand, the cosmological
medium is a highly conducting fluid in the post-inflation era
since σ ∼ T/α, where α is the fine structure constant. Nev-
ertheless, one can argue that in the post-inflation era spatial
currents are not important for superhorizon modes since the
latter belong to acausal regions and we may omit the conduc-
tivity term in relation (15). We point out that in the literature
there are contradicting examples about the contribution of
spatial currents in the wave equation of superhorizon modes
(see for example [22–24,116]).

In case of a flat FRW universe (for the open FRW case
see [117–119], but see also [120]) the Hubble horizon,
λH = H−1, defines the causally connected regions. More-
over, in de Sitter inflation the Friedmann equation of motion
implies H2 ∼ M4/m2

pl, where M is a constant that stands
for the scale of inflation and mpl is the Planck mass. In
this era, the exponential growth of the scale factor secures
a constant Hubble horizon. On the other hand, the physical
wave-length of a quantum fluctuation, λphys = aλ, generated
in the de Sitter background grows exponentially. Therefore,
the length of the perturbation becomes superhorizon in finite
time. Hence, if inflation continues for some e-folds after first
horizon crossing the coherence of the seed field can be today
at scales of 10 kpc–Mpc. This mechanism solves the prob-
lem of the coherence but the exponential expansion combined
with the adiabatic decay of ρB leads to astrophysically unim-
portant magnetic fields.

In order to estimate the energy density of the survived
magnetic field we need to impose some initial conditions.
Let us consider the starting value of the optimistic starting
value of the seed field at the first horizon crossing, namely
λH = λphys, as (ρB)HC ∼ H4. Furthermore, for instanta-
neous reheating (M ∼ TR H ), the fraction of the scale factor

1 We can recast the covariant expressions (9) and (10) with respect to the
conformal time and the rescaled 3-vector potential as a2 Ea = Ã′

a for the
electric field and a2 Ba = −acurlÃa . Thus, for the mean values of the
electromagnetic field we retrieve the qualitative relations a2 E ∝ Ã/η

and a2 B ∝ Ã.

from the first horizon crossing until the end of inflation is
approximately

aINF

aHC
= eN ∼ 1026 λ0

Mpc

M

mpl
, (18)

where λ0 is the observed length of the generated quantum
fluctuation and N stands for the e-folds. Also, from the end of
inflation until the present epoch due to entropy conservation
we get for the scale factor a0/aINF ∼ 1029(H/10−5mpl)

1/2.
Evolving adiabatically the magnetic energy density for the
initial condition (ρB)HC, the residual field is

B0 ∼ 10−58
(

λ0

Mpc

)−2

G. (19)

As is clear from the above relation the resulting magnetic
intensity is independent of the inflation’s scale. However, the
today values of the magnetic field (19) for coherent scales
10 kpc–Mpc are extremely weak compared to the observa-
tions. They are also astrophysically irrelevant even for very
optimistic dynamo mechanisms where a seed field of the
order Bseed ∼ 10−30 G is required. This problem inspires
the study of modified electrodynamics within an inflationary
scenario to slow down the dilution of the magnetic intensity.

4 The LV wave equation

Consider the U (1) gauge field within a Finslerian space–
time. Then, for the particular geometric setup that we dis-
cussed in section (2) the electromagnetic second rank tensor
is written as

Fab = Aa|b − Ab|a (20)

for the Finslerian covariant derivative (4). For the sake of
simplicity, we will investigate the particular generalization of
the Riemannian case, Aa = Aa(x). In this setup, it is trivial
to prove that the tensor field (20) is invariant under the gauge
transformation Aa → A′

a + f|a . Thus, following the same
arguments as the standard relativistic electrodynamics (see
Sect. 3) we can introduce the Coulomb gauge in a covariant
way, namely

φ = Aaua = 0, DaAa = 0. (21)

In that case, the electric field Ea = Fabub and the magnetic
field Ba = εabc Fbc/2 are given by relations (9) and (10) for
the Finslerian covariant derivative.

The electromagnetic field equations and the Bianchi iden-
tities for the U (1) gauge field have been studied in Finsler
geometry (see for example [104,105] and for some recent
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papers [121–123]). Keeping close to GR, the equations of
motion for the electromagnetic field, with respect to the
restricted absolute differentiation (4), are given by the sim-
plified form

Fab
|b = J a . (22)

At first glance the equations of motion look the same as
GR. However, a more careful examination of relation (22)
reveals that second-order covariant differentiation of the vec-
tor potential is involved. For that reason, as in the Riemannian
case in Sect. 3 the derivation of the electromagnetic wave
equation requires the Finslerian Ricci identities. The latter,
involve an extra contribution that directly originates from
non-quadraticity or equivalently from the LV kinematics.

Taking into account the properties of the Cartan connec-
tion and assuming a vector field that depends only on the
position coordinates, the Ricci identities take the simplified
form

Aa
|b|c − Aa

|c|b = Ad R a
d bc − Ca

de Ae Rd
bc , (23)

where the R-torsion in the last term is determined by the
metric function and we can prove that it is related to the cur-
vature tensor by the relation Ra

bc = ld R a
d bc. It is expected

that LV are incompatible with the Ricci identities. Indeed, in
Finsler geometry the effect of LV in the curvature theory is
given by the contribution of color in the r.h.s. of relation (23),
since Cartan’s tensor (2) is involved. On the other hand, using
conservation arguments similar to GR we can relate the cur-
vature tensor Rabcd with the energy-momentum tensor (see
for instance [104,105,110]) by the following formula:

R(ab) − 1

2
Rgab = Tab, (24)

where we use 8πG = 1 for the gravitational coupling
constant, while Rab = gcd Racbd is the Ricci tensor and
R = gab Rab is the Ricci scalar. The equations of motion
for the electromagnetic field (22) combined with the modi-
fied Ricci identities (23) and the algebraic relation between
curvature and matter (24) determine the evolution of an elec-
tromagnetic field in our Finslerian setup.

Consider an irrotational and shear free bulk flow of mat-
ter. In that case, for the Finslerian covariant derivative we set
Daub = 1

3�hab, in direct analogy to the FRW case discussed
in Section (3). Then, on using the Coulomb gauge, decom-
posing the electromagnetic field equation (22) and taking its
space-like part we arrive at the wave equation for the 3-vector
potential given by relation (12) for the Finslerian covariant
derivative. The key difference is that the projected covariant
derivatives appear in relation (12) commute in a modified
way due to the contribution of color in the Ricci identities

(23). In particular, projecting relation (23) orthogonal to the
observers’ 4-velocity and using the Coulomb gauge we arrive
at the contracted 3-Ricci identities

DbDaAb = RbaAb − GbaAb, (25)

where Rab = hcdRacbd is the Ricci curvature of the instan-
taneous rest frame given by relation (14) for the Finslerian
covariant derivative, while Gba = h c

a hdeCd f b R f
ce is the

projected effect of color. Using the Finslerian 3-Ricci iden-
tities (25) the wave equation (12) is written as

Ä〈a〉 + �Ȧ〈a〉 + 1

3

(
�̇ + 2

3
�2

)
Aa − D2Aa + RbaAb

−GbaAb = −Ja, (26)

where the last term reflects the effect of color on the evolu-
tion of electromagnetic fields in our LV setup. In other words,
the adoption of a non-quadratic distance module breaks the
Lorentz symmetry and as a result the Ricci identities are mod-
ified, directly affecting the evolution of the electromagnetic
field.

The spatial tensor Gab given in relation (25) is a coupling
term between the curvature and the Cartan tensor (2). There-
fore, the Finslerian contribution to the electromagnetic wave
equation (26) is more likely to affect the evolution of seed
fields in highly curved regions. Interestingly, that is the case
where we most likely expect effects of QG physics to emerge
(e.g. the early universe). To further investigate the evolu-
tion of magnetic fields in the Finslerian context we need to
take a closer look to the coupling between curvature and LV
appeared in relation (26). The curvature term Rabc = ld Rdabc

follows the same symmetries with the Riemannian case [103]
and for the isotropic and homogeneous limit is decomposed
according to the following formula

Rabc = 1

3
Rga[blc] − Ra[blc] − ga[b Rc]dld . (27)

Then, on using the decomposition (27) together with the field
equations (24) for a perfect fluid Tab = ρuaub + phab, and
assuming a spatially flat geometry Rab = 0, relation (26)
takes the simplified form

Ä〈a〉+�Ȧ〈a〉+1

3

(
�̇+ 2

3
�2

)
Aa−D2Aa−1

3
ρ CbAb�a =−Ja,

(28)

where Ca = h b
a hcdCbcd is a spatial vector constructed by

the Cartan tensor (2) and �a = h b
a lb is the space-like part

of the supporting direction. The last term in the l.h.s. of rela-
tion (28) monitors the anisotropic character of the theory
in accordance to the LV phenomenology. As expected, the
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effect of breaking Lorentz invariance depends on the orien-
tation of the 3-vector potential in space2. Moreover, in the
particular limit we investigate, the Finslerian curvature the-
ory unfolds a possible LV amplification mechanism that is
more efficient in early phases of the cosmological evolution.
Precisely, the LV term in the wave equation is proportional
to the energy density of matter. Hence, even for small depar-
tures from quadraticity the evolution of the electromagnetic
field can be crucially affected in the first stages of the cos-
mological evolution. Interestingly, the high values of energy
density we expect in the early universe imply an electromag-
netic field sensitive to departures from Lorentz invariance.

Concerning the evolution of the expansion in relation (28),
we expect that the modified Ricci identities will complicate
the kinematics. For our case, where the supporting direction
is parallel transported and the electromagnetic field is treated
as a first-order quantity, the Raychaudhuri equation [110] for
shear and vorticity free geodesics can be written

�̇ + 1

3
�2 = −Rabuaub − Tabuaub, (29)

where Tabuaub = C d
ac le R c

e db is the contribution of color
to the expansion dynamics. The above relation, together with
the wave equation (28) for a particular form of Cartan’s ten-
sor (2) determine the evolution of electromagnetic fields.
In case of the shear and vorticity free kinematics that we
imposed, and using the decomposition (27) together with
the field equations (24), it is straightforward to prove that
Tabuaub = 0 when the supporting direction is purely space-
like, laua = 0. In that case, the expansion of the cosmic
medium coalesces with the FRW universe at the background
level. However, on the perturbed manifold of the Finslerian
medium the electromagnetic seed follows a different evo-
lution history from the FRW case. In addition, we expect
that the dynamo mechanism will also generate some shear
and vorticity on the cosmic flow; however, their contribu-
tion is of second order in Raycaudhuri’s equation [107,110].
The main suspect for the different dynamical behavior of the
electromagnetic perturbation is the modified 3-Ricci identi-
ties through which the 3-vector potential ‘feels’ the color (in
other words the LV) of space–time due to its vector nature.

5 The amplification mechanism

In our setup, the bulk flow of matter is given by the restricted
Finslerian congruences along which the supporting direction
is parallel transported, l̇a = 0 [103,110]. In that case, if we

2 It is worth noting that since the model we discuss preserves the U (1)

symmetry the problematic ghost mode identified in [109] is absent.
However, to ensure that in general no ghost modes exist deserves further
investigation.

assume that shear and vorticity are of first order and that
la is purely space-like, Raychaudhuri’s formula (29) implies
an almost FRW expansion. The supporting direction reflects
the local anisotropy and fits well with the LV character of the
theory. In a LV framework we expect that the evolution of
the electromagnetic field depends on the relative direction of
the field and the preferred direction(s) induced by the bro-
ken symmetry. Within our Finslerian setup, the latter case is
clearly depicted in the wave equation (28) since the evolu-
tion of the 3-vector potential depends on its orientation. From
a theoretical viewpoint, the explicit-like violation induced
by a constant supporting direction may not be completely
satisfactory but we believe that our effective ’simplified’
model catches the main characteristics of Lorentz symmetry
breaking.

As we already mentioned, the important point in our anal-
ysis is that the LV term in relation (26) is proportional to the
energy density of matter. Apparently, in the early stages of
the cosmic evolution, where the energy density is high, the
electromagnetic field is more sensitive to departures from
Lorentz symmetry. Thus, we describe by geometric means
the common belief of QG phenomenology that the higher the
curvature of space–time, the stronger the effects of Lorentz
symmetry breaking. The geometric entity that parameterizes
LV is the Cartan tensor (2) that measures the color (non-
quadraticity) of space–time.

Using the properties of Cartan’s tensor (2), the spatial vec-
tor Ca that enters the l.h.s. of relation (28) is always trans-
verse to the purely spatial supporting direction, Ca�a = 0.
Given this orthogonality condition and assuming the har-
monic decomposition Aa = A(k)Q(k)

a with Q̇(k)
a = 0 and

D2Q(k)
a = − k2

a2 Q(k)
a , the wave equation (28) is written in the

following form:

Ã′′
(k) + aσ Ã′

(k) +
(

k2 − 1

3
a2ρ C

)
Ã(k) = 0, (30)

where tilde stands for the rescaling Ã(k) = aA(k), while we
define C = √

CaCa tan(θ) for the angle θ between the sup-
porting direction and the 3-vector potential (θ 
= π/2). Also,
we used Ohm’s law Ja = σ Ea together with relation (9)
for the Finslerian covariant derivative. The Laplace–Beltrami
operator within a Finslerian setup is a well-defined mathe-
matical concept [127]. The intrinsic torsion of the Finslerian
manifold will affect the spectrum of the Laplace–Beltrami
operator. However, for simplicity we use the standard har-
monic decomposition since as we discussed after relation
(29) the background kinematics is ‘almost’ FRW. In the fol-
lowing we will use a mean field approximation (see for exam-
ple [62,63]) as a first attempt to analyze the electromagnetic
wave equation (30). Also, notice that well within the horizon
we recover the standard FRW wave equation and hence in an
inflationary era we can interpret the electromagnetic seed as
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a ‘quantum fluctuation’ as in the usual inflationary scenario.
Nevertheless, due to the exponential expansion the coherence
scale of the seed field grows rapidly and becomes a classical
field. The wave equation (30) is a harmonic oscillator with
varying parameters. In the extremal case where the 3-vector
potential is proportional or perpendicular to the supporting
direction (θ = 0, θ = π/2, respectively), the Finslerian con-
tribution in the wave equation (30) vanishes. The conductiv-
ity plays the role of damping while the LV contribution in
the parentheses implies a time-varying frequency.

If the conductivity is negligible, the evolution of the elec-
tromagnetic field is determined by the varying frequency
term in relation (30). When the latter is negative we expect
that for particular profiles of C the magnetic energy density is
superadiabatically amplified. This condition is fulfilled when
the LV term dictates in the last term of relation (30). For an
almost flat FRW background, H2 ∼ 1

3ρ, the required condi-
tion for superadiabatic amplification reads

C >

(
λH

λphys

)2

, (31)

where we define λH = 1/H for the Hubble horizon and
λphys = a/k is the comoving wavelength of the electromag-
netic fluctuation. Within the de Sitter inflationary scenario
the coherence scale of the magnetic quantum fluctuation is
well outside of the horizon for the largest portion of its cos-
mological evolution, λphys � λH . Hence, inequality (31)
holds even for small values of C. In other words electromag-
netic fields of superhorizon scales are sensitive to departures
from Lorentz invariance. The main reason for this effect is
the color-curvature coupling in the last term of the Finsle-
rian 3-Ricci identity (25). Due to this coupling the larger
the coherence length, the more the color affects the photon
sector.

5.1 Evolution of the magnetic field

The Cartan tensor Cabc parameterizes LV since it monitors
the colorful morphology of the Finslerian space–time. The
particular form of the tensor Cabc remains unconstrained
unless we relate the metric function F(x, y) with a particular
QG scenario which is beyond the scope of the present work.
As an illustrative example let us choose a particular profile for
the LV parameter C. To be precise, during inflation we assume
the simple case C ∼const in order to slow down the dilution
of the magnetic intensity. Then, as we enter the classic era
of radiation we set C ∼ a−x to ‘wash out’ the QG effects.
In a more detailed analysis one may study more complicated
profiles for the Cartan parameter C to avoid possible back-
reaction and similar to strong coupling issues [124,125].

In the inflationary era the temperature exponentially
decays and the conductivity becomes negligible. Also, the

scale factor evolves with respect to the conformal time as
a ∝ η−1, with η < 0. In addition, the Hubble parame-
ter remains constant, H = −(aINFηINF)−1. Putting these
together and using the Friedmann equation H2 ∼ 1

3ρ the
wave formula of the 3-vector potential (30) takes the simpli-
fied form

Ã′′
(k) + (k2 − η−2CINF)Ã(k) = 0, (32)

which is of Bessel type, and CINF stands for the constant
value of the LV parameter during de Sitter inflation. Since
inflation implies very long coherence scales, after a first
horizon crossing we are interested in electromagnetic fields
well outside the horizon, kη � 1. Then the mean value
of the 3-vector potential for superhorizon modes evolves

as Ã ∝ η
1
2 (1±√

1+4CINF). By virtue of relation (10) we get
Ã ∼ ka2 B for the mean values of the 3-vector and the mag-
netic intensity. Thus, in the inflationary era the generated
magnetic quantum fluctuation grows as B ∝ a−ν/2 where
ν = 5 ∓ √

1 + 4CINF. In this case, due to the approximate
relation B ∼ kηE and observing that η ∝ a−1 the average

intensity of the electric field scales as E ∝ a− 1
2 (ν−2). Thus, in

order to ensure that the energy density of the electromagnetic
field remains smaller than the energy density of inflation, we
get ν ≥ 2. In that case the model avoids back-reaction issues
[124,125].

After the end of inflation and assuming instantaneous
reheating (TRH ∼ M) the cosmic fluid enters the radiation
era. In this case, the scale factor evolves with respect to the
conformal time as a ∝ η. During radiation, the conductiv-
ity is approximately proportional to temperature σ ∼ T/α,
where α is the fine structure constant. Therefore, almost from
the beginning of radiation the conductivity is very large and at
some point dominates in the wave equation (30). Taking the
limit of infinite conductivity σ � H , relation (30) implies
that A′ → 0 and on using (10) we recover the adiabatic
decay B ∝ a−2. However, as we have already discussed in
Sect. 3 one may argue that in superhorizon scales spatial cur-
rents are not important and the conductivity term in relation
(30) vanish (see for example [22–24]). When the last term in
relation (30) dominates and assuming the power-law profile
for the LV contribution C ∝ a−x , the general solution for
superhorizon modes (kη � 1) reads

Ã(k)(η) = C1
√

η Kx/2(ζ ) + C2
√

η I−x/2(ζ ), (33)

for the modified Bessel functions with ζ = 2
x

√
C. There-

fore, at leading order the mean value of the 3-vector poten-
tial evolves as Ã ∝ a which implies that the average value
of the magnetic field grows superadiabatically, B ∝ a−1.
This mechanism is valid until either the conductivity term
in relation (30) dominates or until the coherence length of
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the magnetic fluctuation approaches the horizon and condi-
tion (31) is no longer satisfied. After these two cases, the
amplification stops operating and the magnetic energy den-
sity follows the usual power-law profile, ρB ∝ a−4.

5.2 Residual magnetic field

As we have already discussed, in standard relativistic elec-
trodynamics magnetic fields dilute adiabatically. In the Fins-
lerian setup the color directly implies the breaking of Lorentz
invariance and under certain conditions can slow down the
decay of the magnetic intensity. Roughly speaking, for an
optimistic scenario the energy density of the magnetic fluctu-
ation is determined by the uncertainty principle, �E�t ∼ 1.
Taking into account that in the background the expansion
dynamics is almost FRW (see relation (29)) we estimate
the energy density at first horizon crossing, (ρB)HC =
�E/�V ∼ H4 [126]. Then, using the power law for the
magnetic intensity that we derived during the de Sitter era
we get at the end of inflation BINF = BHC(aHC/aINF)ν/2.
After the end of inflation and for instantaneous reheating
the cosmic fluid enters the epoch of radiation where plasma
effects are important. We consider separately the two differ-
ent possibilities, depending on whether or not spatial currents
are important in superhorizon scales.

If plasma effects are negligible in scales well outside the
horizon, the LV amplification mechanism can last for a con-
siderable amount of time in the radiation phase. The longer
the scale of the fluctuation the more is affected by departures
from the Riemannian measurement. However, during radia-
tion the horizon grows faster than the physical wave-length
of the magnetic perturbation. Therefore, within a finite time-
interval the parentheses in relation (30) becomes positive
and we recover the adiabatic profile. Roughly speaking, this
condition reads λphys ∼ (H2C)−1/2, which corresponds to
a particular value of the scale factor a = a∗. In fact, taking
into account that during radiation aT ∼const and assuming a
power-law profile for the LV parameter C ∝ a−x we retrieve
the approximate value for the scale factor

a∗ ∼
(

10−6 λ0

Mpc

√
C0

)2/(2+x)

, (34)

where C0 is the value of color today, λ0 the scale of the B-field
today, while the Hubble parameter is given with respect to
the temperature by H ∼ T 2/mpl and we used T0 � 2.35 ×
10−13 GeV for the present temperature of the CMB. Notice
that the condition C∗ < 1 implies that the adiabatic decay
is recovered before the magnetic coherence scale re-enters
the horizon. Thus, if we consider that the conductivity is
negligible on superhorizon scales the plasma effects act after
the adiabatic evolution of the magnetic field is recovered.

On the other hand, if we assume that plasma effects are
important in superhorizon scales the amplification mecha-
nism stops when the friction term in relation (30) dominates.
Approximating aσ Ã′ with aσ Ã/η and using aη ∼ H−1 the
conductivity dominates when σ/H � C. The conductivity
is approximately σ ∼ T/α and given that H ∼ T 2/mpl, on
the onset of radiation we get σ/H ∼ mpl/Mα for instanta-
neous reheating. The upper value for the scale of inflation M
is constrained by the CMB for the spectrum of the gravita-
tional waves generated during inflation, M � 10−2mpl. This
translates to the lower limit for the conductivity after instanta-
neous reheating σ/H � 104, hence for reasonable values of
color any LV contribution is ’washed-out’. Therefore, if we
assume that conductivity is important on scales well outside
the horizon, the magnetic field evolves adiabatically from the
end of inflation until today.

Finally, evolving the magnetic quantum fluctuation from
the time of first horizon crossing until today, we get

B0 ∼10−31e−νN/2 M3

mpl

(
10−6 λ0

Mpc

√
C0

) 2
2+x (1−s)

×
(

1032 M

mpl

)−s

,

(35)

where s is a ‘switch’ that turns on and off the conductiv-
ity in superhorizon scales. When s = 0 the plasma effects
are omitted in superhorizon scales and the magnetic field
decays adiabatically after a∗ given in (34), while for s = 1
any LV effect is subdominant immediately after inflation.
Apparently, for a wide range of the parameters of inflation
and Lorentz symmetry violation, we can sustain astrophysi-
cally relevant magnetic fields with coherence scales 10 kpc–
1 Mpc. Interestingly, taking into account the observational
constraints on primordial magnetic fields, relation (35) gives
back constraints for the ‘Finslerity’ of space–time. Indeed,
there are various constraints on primordial magnetism from
matter density fluctuations [128], the laser interferometer
gravitational-wave observatory (LIGO) [129], the Chandra
X-ray and Sunyaev–Zel’divich surveys [130] and from the
Big Bang Nucleosynthesis [131,132]. All the previous inves-
tigations provide weaker constraints than the CMB, which
gives back an upper limit of ∼10−9 G [133–142] that can
be potentially upgraded up to ∼10−11 G by CMB polar-
ization experiments [143–146]. From the latter constraints,
assuming that the energy density of the electromagnetic field
decreases during inflation (ν = 2), for a coherent seed
field of 1Mpc and the upper value of the inflationary scale
M = 10−2mpl we get the range for the today values of the
Cartan parameter, 10−53 � C0 � 10−6. Also, there exist
constraints that practically rule out a blue spectrum of the
inflation generated magnetic field [147–149]. The primor-
dial magnetic field generates gravitational waves and con-
straints from nucleosynthesis point toward a red spectrum.
We expect that the properties of the spectrum within our setup
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will be affected by the colored ’morphology’ of the Finsle-
rian space–time. This detailed and complicated analysis will
eventually constrain further the parameter space of the LV
setup and we will address it in future work.

In addition, we can recover standard electromagnetism at
BBN and still sustain relevant astrophysical magnetic fields.
Given that T ∼ 1 MeV during BBN relation (34) gives back
the upper value for the ‘Finslerity’ today C0 � 10−12 that
translates to a magnetic field B0 � 10−13 G on 1Mpc.
Putting all these together, the ’safe’ range of the Cartan
parameter is

10−53 � C0 � 10−12. (36)

The parameter C represents a potential Lorentz invariance
violation in the gravity sector. In the absence of curvature
we recover the standard electromagnetic theory. However,
when the coherence scale is larger than the horizon curvature
becomes important and the primordial seed becomes sensi-
tive to possible LV in gravitational physics. The range of the
Cartan parameter (36) results exactly from this mechanism.
Therefore, constraints that arise from LV in the gravitational
sector can be potentially combined with the effect of color on
primordial magnetic fields that leads to the estimate (36) for
the ’Finslerity’ of space–time. The reader should note that the
parameterized post-Newtonian analysis in Finsler geometry
has been studied in [150–152].

Furthermore, if we take into account spatial currents in
superhorizon scales after inflation the model suffers from
backreaction/strong coupling issues [124,125]. For the best
case scenario of a decaying electromagnetic energy den-
sity (ν = 2) and for the extremal value for the scale of
inflation M = 10−2mpl we can sustain a primordial mag-
netic field of 10−33 G on 1 Mpc. This magnetic inten-
sity can be astrophysically relevant only for the most opti-
mistic scenarios of the galactic dynamo and protogalactic
collapse. However, in a more sophisticated approach we may
consider non-monotonic profiles of the Cartan parameter
C, to overcome the backreaction/strong coupling problem
[124,125].

6 Discussion

Summarizing, in this article we concentrate our analysis
on the possibility of sustaining seed magnetic fields within
an inflationary scenario. Motivated from current studies of
QG theories, the amplification mechanism is based on the
assumption that Lorentz invariance is not an exact symme-
try of nature. In our analysis, we try to formulate depar-
tures from Lorentz invariance with pure geometric means. To
achieve this, we first develop the 4-potential representation
of electromagnetism in a covariant framework by following

the 1+3 formalism. The derivation of the wave equation for
the 3-vector potential brings in the center of attention the
Ricci identities. The latter identities, are incompatible with a
large class of LV theories [106] and this creates an obstacle
to investigations of electrodynamics in curved space–times
when we abandon Lorentz symmetry. From a geometric per-
spective we expect that the evolution of the electromagnetic
field will be affected through some modified commutation
formula for vector fields. This discussion is in alliance with
amplification mechanisms that break the conformal symme-
try of electromagnetism, since Lorentz invariance underpins
the local structure of GR as well as the symmetries of the
electromagnetic field theory.

We use Finsler geometry as our theoretical background to
study the evolution of electromagnetic fields when Lorentz
invariance is broken. Finsler geometry provides a general
framework to study LV theories since we relax the local sym-
metries of the space–time manifold by dropping the quadratic
restriction on the distance module. The LV is parameterized
by the Cartan tensor that measures departures from the Rie-
mannian measurement and enters the generalized Ricci iden-
tities. Keeping close to GR, we derived a modified wave
equation for the electromagnetic field. The LV contribution
directly originates from the Finslerian Ricci identities that
monitor the curved and locally anisotropic structure. Interest-
ingly, the geometric amplification is based on a coupling term
in the wave equation, between the curvature of space–time
and the Cartan tensor that parameterizes LV. This introduces
an amplification mechanism that is more efficient in long
wavelengths where curvature effects are important. Thus,
within an inflationary scenario where quantum fluctuations
are stretched to superhorizon scales, the Finslerian amplifi-
cation mechanism can generate sufficiently strong magnetic
fields in coherence scales 10 kpc–1 Mpc.

The introduction of color breaks the local symmetries of
GR and modifies the electromagnetic field theory. Within our
setup, the color of space–time is measured by the Cartan ten-
sor that evolves throughout the cosmological history. Due to
its presence, we will get additional LV effects on other cos-
mological relics. For example, the non-quadratic metric func-
tion implies a modified mass-shell condition [64–85] that can
potentially be constrained by the baryon asymmetry and the
abundance of light elements. Also, the present amplification
mechanism will induce some anisotropization of the CMB
background. Moreover, we can estimate the upper bounds
of the parameters that break the quadratic restriction by col-
lider physics, threshold anomalies, time of flight effects and
solar system tests. All this phenomenology and cosmologi-
cal constraints combined with particular QG theories where
the effective geometry is Finslerian can give a better insight
about LV and the colorful morphology of the physical mani-
fold. This detailed and complicated analysis is an intriguing
open challenge (for some recent studies see [91–96,153–
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160]). Since our amplification mechanism strongly depends
on the intensity of Cartan tensor and its evolution in time, con-
straining the ‘Finslerity’ of space–time may lead to a better
understanding of why our universe is magnetized.
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