28 research outputs found

    Protein Disorder and Degradation: Is Ubiquitin the Missing Link?

    Get PDF

    Single-Cell RNA Sequencing Reveals a Dynamic Stromal Niche That Supports Tumor Growth

    Get PDF
    Here, using single-cell RNA sequencing, we examine the stromal compartment in murine melanoma and draining lymph nodes (LNs) at points across tumor development, providing data at http://www.teichlab.org/data/. Naive lymphocytes from LNs undergo activation and clonal expansion within the tumor, before PD1 and Lag3 expression, while tumor-associated myeloid cells promote the formation of a suppressive niche. We identify three temporally distinct stromal populations displaying unique functional signatures, conserved across mouse and human tumors. Whereas "immune" stromal cells are observed in early tumors, "contractile" cells become more prevalent at later time points. Complement component C3 is specifically expressed in the immune population. Its cleavage product C3a supports the recruitment of C3aR(+) macrophages, and perturbation of C3a and C3aR disrupts immune infiltration, slowing tumor growth. Our results highlight the power of scRNA-seq to identify complex interplays and increase stromal diversity as a tumor develops, revealing that stromal cells acquire the capacity to modulate immune landscapes from early disease.Peer reviewe

    Mapping interindividual dynamics of innate immune response at single-cell resolution

    Get PDF
    Common genetic variants across individuals modulate the cellular response to pathogens and are implicated in diverse immune pathologies, yet how they dynamically alter the response upon infection is not well understood. Here, we triggered antiviral responses in human fibroblasts from 68 healthy donors, and profiled tens of thousands of cells using single-cell RNA-sequencing. We developed GASPACHO (GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), a statistical approach designed to identify nonlinear dynamic genetic effects across transcriptional trajectories of cells. This approach identified 1,275 expression quantitative trait loci (local false discovery rate 10%) that manifested during the responses, many of which were colocalized with susceptibility loci identified by genome-wide association studies of infectious and autoimmune diseases, including the OAS1 splicing quantitative trait locus in a COVID-19 susceptibility locus. In summary, our analytical approach provides a unique framework for delineation of the genetic variants that shape a wide spectrum of transcriptional responses at single-cell resolution

    Gene expression variability across cells and species shapes innate immunity.

    Get PDF
    As the first line of defence against pathogens, cells mount an innate immune response, which varies widely from cell to cell. The response must be potent but carefully controlled to avoid self-damage. How these constraints have shaped the evolution of innate immunity remains poorly understood. Here we characterize the innate immune response's transcriptional divergence between species and variability in expression among cells. Using bulk and single-cell transcriptomics in fibroblasts and mononuclear phagocytes from different species, challenged with immune stimuli, we map the architecture of the innate immune response. Transcriptionally diverging genes, including those that encode cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, genes that are involved in the regulation of this response, such as those that encode transcription factors and kinases, are conserved between species and display low cell-to-cell variability in expression. We suggest that this expression pattern, which is observed across species and conditions, has evolved as a mechanism for fine-tuned regulation to achieve an effective but balanced response

    Ubiquitin not only serves as a tag but also assists degradation by inducing protein unfolding

    No full text
    Protein ubiquitination controls the cellular fate of numerous eukaryotic proteins. Despite its importance, many fundamental questions remain regarding its mechanism. One such question is how ubiquitination alters the biophysical properties of the modified protein and whether these alterations are significant in the cellular context. In this study, we investigate the effects of ubiquitination on the folding thermodynamics and mechanism of various substrates using computational tools and find that ubiquitination changes the thermal stability of modified proteins in a manner relevant to cellular processes. These changes depend on the substrate modification site and on the type of ubiquitination. Ubiquitination of the substrate Ubc7 at the residues that are modified in vivo prior to proteasomal degradation uniquely results in significant thermal destabilization and a local unwinding near the modification site, which indicates that ubiquitination possibly facilitates the unfolding process and improves substrate degradation efficiency. With respect to the substrate p194inkd, our results support a synergetic effect of ubiquitination and phosphorylation on the degradation process via enhanced thermal destabilization. Our study implies that, in addition to its known role as a recognition signal, the ubiquitin attachment may be directly involved in the cellular process it regulates by changing the biophysical properties of the substrate

    Use of Host-like Peptide Motifs in Viral Proteins Is a Prevalent Strategy in Host-Virus Interactions

    Get PDF
    Viruses interact extensively with host proteins, but the mechanisms controlling these interactions are not well understood. We present a comprehensive analysis of eukaryotic linear motifs (ELMs) in 2,208 viral genomes and reveal that viruses exploit molecular mimicry of host-like ELMs to possibly assist in host-virus interactions. Using a statistical genomics approach, we identify a large number of potentially functional ELMs and observe that the occurrence of ELMs is often evolutionarily conserved but not uniform across virus families. Some viral proteins contain multiple types of ELMs, in striking similarity to complex regulatory modules in host proteins, suggesting that ELMs may act combinatorially to assist viral replication. Furthermore, a simple evolutionary model suggests that the inherent structural simplicity of ELMs often enables them to tolerate mutations and evolve quickly. Our findings suggest that ELMs may allow fast rewiring of host-virus interactions, which likely assists rapid viral evolution and adaptation to diverse environments

    Rapid Evolution of Virus Sequences in Intrinsically Disordered Protein Regions

    No full text
    <div><p>Nodamura Virus (NoV) is a nodavirus originally isolated from insects that can replicate in a wide variety of hosts, including mammals. Because of their simplicity and ability to replicate in many diverse hosts, NoV, and the <i>Nodaviridae</i> in general, provide a unique window into the evolution of viruses and host-virus interactions. Here we show that the C-terminus of the viral polymerase exhibits extreme structural and evolutionary flexibility. Indeed, fewer than 10 positively charged residues from the 110 amino acid-long C-terminal region of protein A are required to support RNA1 replication. Strikingly, this region can be replaced by completely unrelated protein sequences, yet still produce a functional replicase. Structure predictions, as well as evolutionary and mutational analyses, indicate that the C-terminal region is structurally disordered and evolves faster than the rest of the viral proteome. Thus, the function of an intrinsically unstructured protein region can be independent of most of its primary sequence, conferring both functional robustness and sequence plasticity on the protein. Our results provide an experimental explanation for rapid evolution of unstructured regions, which enables an effective exploration of the sequence space, and likely function space, available to the virus.</p></div

    GFP expression from the two replicon designs.

    No full text
    <p><b>A.</b> Protein A fusion replicon construct and FACS analysis, <b>B.</b> Protein B2 fusion replicon construct and FACS analysis. The hatched yellow box represents the extension of the RNA element, as in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004529#ppat-1004529-g003" target="_blank">Fig. 3</a>. 48 hours after transfection into BSR, cells were trypsinized and examined by FACS. Cells in the GFP-positive gate are shown. Cells transfected with wt polymerase constructs are shown in green; those transfected with GAA mutant polymerase constructs are shown in purple.</p
    corecore