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Common genetic variants across individuals modulate the cellular
response to pathogens and are implicated in diverse immune pathologies,
yet how they dynamically alter the response upon infection is not well
understood. Here, we triggered antiviral responses in human fibroblasts
from 68 healthy donors, and profiled tens of thousands of cells using
single-cell RNA-sequencing. We developed GASPACHO (GAuSsian
Processes for Association mapping leveraging Cell HeterOgeneity),
astatistical approach designed to identify nonlinear dynamic genetic
effects across transcriptional trajectories of cells. This approach identified
1,275 expression quantitative trait loci (local false discovery rate 10%)

that manifested during the responses, many of which were colocalized
with susceptibility lociidentified by genome-wide association studies

of infectious and autoimmune diseases, including the OAS1 splicing
quantitative trait locus in a COVID-19 susceptibility locus. In summary, our
analytical approach provides a unique framework for delineation of the
genetic variants that shape awide spectrum of transcriptional responses at
single-cell resolution.

The innate immune response is a cell-autonomous program that
induces an antiviral state in infected and nearby cells and alerts the
immune system of the invading pathogen'. Dysregulation of this
response can affect a wide range of inflammatory and autoimmune
diseases and determine the outcome of infection®°. Common genetic
variants have been shown to modulate transcriptional responses to
various viral and bacterial stimuli, and to contribute to disease onset
and progression” . Most past gene-expression-focused studies of this
program are based on bulk RNA-sequencing (RNA-seq) technologies,
which do not fully elucidate the continuous dynamics of transcrip-
tional changes during the innate immune response. Single-cell genomic

technologies are powerful approaches to study cell heterogeneity
and transcriptional variability across cells'. Furthermore, by utilizing
single-cell RNA-seq (scRNA-seq) profiling of tissues composed of sev-
eral celllineages, previous studies have successfully performed genetic
association mapping of cell-type-specific expression ™,

We here use full-length scRNA-seq of dermal fibroblasts from
different human individuals, challenged with immune stimuli. Based
on the pseudo-temporal reconstruction of these data, we map the
transcriptional variation of the innateimmune response at single-cell
resolution. This provides the foundation for superimposing human
genetic variation onto the transcriptional dynamics of this response.

A full list of affiliations appears at the end of the paper.
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Fig.1|Schematics of experiment and statistical analysis. a, Experimental
design using the in vitro fibroblast system. b, GASPACHO framework. Expression
dataand relevant metadata (known confounding factors) as well as donor (cell
line) structure are used to construct a GPLVM to extract the target cell state, while
dissecting cell cycle effect and other known and unknown technical variability

including donor-donor variation. The result of the GPLVM is then utilized for
the subsequent analyses of spatial DE analysis using a GP mixture model and
the genetic association mapping using a GP regression model (Methods). Cond,
experimental condition; Dim, dimension; ref/het/alt, reference homozygote/
heterozygote/alternative homozygote.

Tothisend, we develop astatistical approach based on a Gaussian pro-
cess (GP) latent variable model (GPLVM)*** called GASPACHO (GAuSs-
ian Processes for Association mapping leveraging Cell HeterOgeneity).
This allows us to identify expression quantitative trait loci (eQTLs) that
manifest at different stages of the response to stimuli.

We find more than a thousand eQTLs, hundreds of which are
colocalized with known risk loci of diverse autoimmune and infec-
tious diseases. We perform fine-mapping of the OAS1locus, associated
with COVID-19, toreveal theimbalanced expression of 0AS1 and OAS3
genes during the antiviral innate immune response. We further inte-
grate these data with eQTLs from a COVID-19 patient cohort dataset
of peripheral blood mononuclear cell (PBMC) scRNA-seq?, as well as
with scRNA-seq data of infected nasal epithelial cells from 33 patients
with COVID-19 (ref. 23).

Overall, our study illustrates how coupling single-cell transcrip-
tomics with a cutting-edge statistical approach canidentify dynamic
effects of human trait-associated genetic variantsin different contexts
of activation of antiviral innate immunity and, in general, in diverse
cellular dynamic processes.

Results
Cell stimulation to study antiviral responses in fibroblasts
Tostudy the innateimmune expression program thatis triggered upon
viralinfection, we exposed primary dermal fibroblasts from 68 donors
from the Human Induced Pluripotent Stem Cell Initiative (HipSci)* to
two stimulants: (1) Poly(I:C), a synthetic double-stranded RNA (dsRNA)
thatisrapidly recognized by viral sensors and elicits primary antiviral
and inflammatory responses; and (2) interferon- (IFN-), a cytokine
that upregulates a secondary wave of response in both infected and
bystander cells, and shifts the cellsinto an antiviral mode, where hun-
dreds of interferon-stimulated genes (ISGs) are upregulated to contain
the infection.

We collected cells exposed to each of the two stimuli after 2
and 6 h of stimulation (Fig. 1a). Following this, scRNA-seq profiling

was performed using a plate-based full-length transcript approach
(Methods). After quality control, 22,188 high-quality cells were
obtained across 128 plates, with each plate containing cells from three
donors (Fig. 1a). The donor identity for each cell was inferred from
scRNA-seqread data using known genotypes made available by HipSci
(Extended DataFig.1aand Methods). Preliminary analysis showed that
our data display high cell-to-cell variability in gene expression both
within and across donors, as observed in previous studies by us and
others®”. Infact, our data were confounded by various technical and
biological factors, including library preparation in different batches,
and cell cycle effects (Extended Data Fig. 1b). The complex nature of
these data, along with their confounders, motivated us to develop an
approach that reveals the genetic and physiologically relevant varia-
tion, while computationally masking confounding factors.

Uncovering cell-state dynamics using GPs
Single-cell transcriptomics (as compared with bulk) enables us to
uncover hidden states of complex biological processes, while also
requiring regression of technical effects and biological variation that is
not of interest (for example, proliferation). We developed GASPACHO,
which utilizes a GPLVM to uncover the dynamic cell states of inter-
est, while adjusting periodic cell cycle variation and both known and
unknown technical variations (such as, donor and Smart-Seq2 plate
variations) simultaneously (Fig. 1b and Methods). The use of a GPLVM
allows us to capture smooth and continuous nonlinear trends in gene
expression along the latent variables, for which other methods such
asthe standard linear principal component analysis will not work well.
Although there are other models that utilize a GPLVM to study
single-cell dynamics®®%, the unique aspect of our GPLVM approachis
that it explicitly takes account of the donor variation as well as other
known confounding effects (such as technical batches) as additional
random effect terms (Fig. 1b and Methods). These confounders are
known toinflate the typelerrorindownstream analyses, such asin dif-
ferential expression®® (DE), leading to false discovery of differentially
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Fig. 2 |Innate immunity captured by GPLVM and GP mixture model.

a, UMAP of latent variables capturing innate immune variation between cells.
Cells are colored by the five experimental time points (gray, naive state; pink,
IFN-B 2 h; brown, IFN-B 6 h; blue, Poly(I:C) 2 h; navy, Poly(I:C) 6 h). b, Estimated
pseudotime for primary and secondary responses using the GP mixture model.
UMAP coordinates are identical to a. ¢, Barplot shows the numbers of response
and stationary genes. d, Heatmaps show dynamic gene expression changes

0 10 20 30 Scaled expression (Z-score)

-log,,P
along primary or secondary response pseudotime. The pseudotime color scale
corresponds to b. The expression color (navy to yellow) shows the magnitude of
scaled expression for each gene (Z-score). e, UMAP shows a predicted Achilles
cell viability using CEVIChE (Methods). UMAP coordinates are identical to a.
f, Barplot shows the enrichment of gene ontology terms for primary and secondary
genes. Pvalues were computed using Fisher’s one-tailed test with Bonferroni
multiple testing correctionimplemented in gprofiler2 on R.K, thousand.

expressed genes. As detailed below, the model output not only enabled
us to look at the architecture of the antiviral response in the cell-state
space, butalso provided arigorous statistical framework of (1) spatial
DE analysis and (2) genetic association mapping using genotype data
obtained from the donor of origin for each cell.

Specifically, the gene expression variationin the target cell-state
space was inferred by a GP mixture model in which an additional GP
componentisintroduced into the model to capture hidden spatial DE
patterns® of gene expressionin the latent space (Fig. 1b and Methods).
The genetic association mapping was also carried out by using a GP
regression model in which the effect size of a quantitative trait locus
(QTL) was modeled as a GP in the target cell-state space. Here, the
additional GP was multiplied by the genotype dosage (the number of
alternative alleles for each donor) to capture the gene-environment
interaction® (Fig. 1b and Methods). Importantly, the eQTL effect is
obtained at single-cell resolution, and the model does not require
aggregation of single-cell datainto pseudo-bulk data, whichisa com-
mon eQTL mapping strategy. Thus, we can study the effect of genetic
variants without losing the continuum of transcriptional dynamics and
its spectrum across individual cells. We performed a comprehensive
analysis to assess our methodinterms of both sensitivity and specificity
withanother single-cell-based eQTL mapping approach, CellRegMap™,
using simulation-based datasets (section 3 of the Supplementary
Notes). We have implemented the software in R, whichis available from
github (https://github.com/natsuhiko/GASPACHO).

Primary and secondary responses of innate immunity

We first applied the GPLVM to adjust for the cell cycle and unknown
batch effects in our data (Extended Data Fig. 2a,b) and successfully
extracted the innateimmune state embedded in the data (Fig.2a). We
also confirmed that the extracted immune state was independent of
cellcycle or the unknown batch variations (Extended DataFig. 2c). We
observed two major cell trajectories: one for response to IFN-3 from
the naive state (x axis) and the other for response to Poly(I:C) (y axis).

We then applied the GP mixture model which revealed two inde-
pendent innate immune responses, the primary response by virus
infection and the secondary response for bystander cells due to IFN-f3
secretion by the infected cells or direct IFN-f stimulation (Fig. 2b and
Extended DataFig. 3a). Those responses were highly overlapping on the
Uniform Manifold Approximation and Projection (UMAP), suggesting
those two processes are independently and simultaneously happen-
ing in each cell. In total, the GP mixture model discovered 903 and
636 genes upregulated during the primary and secondary responses,
respectively (hereafter referred to as primary response genes and sec-
ondary response genes), while 1,020 genes were expressed uniformly
across all cells in different experimental conditions (referred to as
stationary genes) (Fig. 2c and Extended Data Fig. 3b). Many cytokine
and chemokine genes were upregulated along the primary response,
while ISGs were upregulated along the secondary response (Fig. 2d).
Interestingly, the primary response was also correlated with the pre-
dicted cell viability by CEVIChE (CEIll Vlability Calculator from gene
Expression) (Fig. 2e and Methods). The gene ontology enrichment
analysis for the primary and secondary genes clearly demonstrated
that primary response genes are enriched for cell death and inflamma-
tory response, while secondary response genes are enriched for type |
interferonresponse (Fig. 2f and Extended DataFig. 3c).

Dynamic genetic effect oninnate immune response

We then mapped eQTLs along innate immune responses using the GP
regressionmodel to assess genetic association in single-cell resolution
(Methods). We discovered1,275eQTL genes (local false discovery rate
(FDR) 10%) among 10,748 genes expressed, at least, in10% of total cells.
We mapped eQTLs inthe HLA region where 91 genes were tested, and
25 genes were eQTLs (local FDR10%). Because the number of eQTLs
was high for the modest sample size, we examined whether there was
aninflation of test statistics for eQTL variants with lower minor allele
frequencies (MAFs) and confirmed that there was no inflation in the
Bayes factors norinthe number of discovered eQTLs in lower MAF bins
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Fig. 3| Characteristics of response eQTLs mapped using GP regression.

a, Barplot showing the numbers of eQTLs (local FDR <10%) that are primary

and secondary response genes or stationary genes. Forest plots showing the
enrichment of discovered eQTLs for the DE categories and GTEx fibroblast eQTL
colocalizations. The error bars in the forest plots show 95% confidence intervals
(standard errors) of odds ratios using N =10,748 genes as independent samples
(Methods). b, Barplot showing the numbers of static and dynamic eQTLs (primary
and secondary response eQTLs). Forest plots showing the enrichment of response
eQTLs for differentially expressed genes (primary, secondary response and static
eQTLs for primary and secondary response genes, and for stationary genes,
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respectively) and the enrichment of response eQTLs of GTEx fibroblast eQTL
colocalization. The error bars in the forest plots show 95% confidence intervals
(standard errors) of odds ratios using N =10,748 genes as independent samples
(Methods). ¢, UMAPs showing CXCL1 expression levels stratified by different
genotype groups at rs1358594G>T. UMAP coordinates are identical to Fig. 2a.

d, UMAP shows the distribution of eQTL effect size () at rs1358594. The
alternative allele (T) is assessed. UMAP coordinates are identical to Fig. 2a.

e, Locus zoom plot of CXCL1eQTL association Bayes factors around the CXCL1
gene (top, in-house data; middle, GTEx fibroblast eQTL; bottom, eQTLGen blood
eQTL). BF, Bayes factor; fibro coloc, colocalisation with GTEx fibroblast eQTLs.

(Extended DataFig.4a,b). We note that the eQTL genes discovered are
strongly enriched in highly expressed genes (Extended Data Fig. 4c),
but thisis not the case for differentially expressed genes (for example,
stationary genes were depleted in highly expressed genes; Extended
DataFig. 4d).

We found that 15% and 16% of our eQTL genes are primary and
secondary response genes, respectively (Fig. 3a and Extended Data
Fig.4e). These genes arestrongly enriched within the discovered eQTLs
(Fig. 3b and Extended Data Fig. 4f). Because eQTL genes tend to be
highly expressed (Extended Data Fig. 4c), we adjusted enrichments for
the average expression level (Methods) and confirmed that theresultis
broadly the same (Extended Data Fig. 4f). We also found that primary
response genes are depleted in colocalization between our eQTLs
and fibroblast eQTLs from the Genotype-Tissue Expression (GTEX)
Project, while the stationary genes are enriched (odds ratio of 2.8)
(Fig.3a, Extended DataFig.4g,h and Methods), suggesting our eQTLs
are highly context-specific. We note that the odds ratio observed sug-
gests a notable agreement between the two datasets (GTEx and our
data), whichis meaningful given the experimental and technical differ-
ences between the two studies which can strongly affect gene expres-
sionand subsequent eQTL discovery.

Next, we classified our eQTLs into staticand dynamic eQTLs. We
thenfurther classified the dynamic eQTLs into distinct spatial patterns
of their effect sizes utilizing a similar GP mixture model that segre-
gated response genes (Methods). We discovered 830 (65%) (posterior
probability > 0.9) of our eQTLs were static eQTLs whose genetic effect
isubiquitousinany cellular state (Fig. 3b and Extended Data Fig. 41,j).
Furthermore, 184 (14%) and 141 (11%) of our eQTLs were primary and

secondary response eQTLs, respectively, whose patterns resembled
the spatial DE patterns of primary and secondary response genes
(Extended Data Fig. 4i). We also found that the primary/secondary
response eQTLs were enriched with primary/secondary response
genes, respectively, while the static eQTLs were enriched with other
types of differentially expressed genes (Fig. 3b and Extended Data
Fig. 4k). The fact that the static eQTLs are significantly enriched
with GTEx fibroblast eQTLs, while the primary response eQTLs are
depleted, further supports the notionthat our eQTLs are specifictothe
innate immune response and not detectable in a naive cellular state.
We note here that, as was shown in our simulation study (section 3 of
the Supplementary Notes), the GP mixture modelis robust against the
lower detection limit of gene expression quantified by the sequenc-
ing technology. Therefore, the misclassification rate in the real data
analysisis likely to be minimal.

Asanexample, the CXCL1geneisaknown primary innateimmune
response gene and a primary response eQTL (as expected from its
known functions as an important chemokine in this response). It is
mostly expressed in later time points of Poly(I:C)-stimulated cells
(Fig. 3c), and its expression level is higher for the alternative allele T
atrs1358594 compared with the reference allele G (Fig. 3d). ThiseQTL
signal was discovered more than 100 kilobases (kb) downstream of
the gene’s transcription start site (TSS) and only detected upon cell
stimulation by Poly(I:C), but not in the naive condition, as also shownin
the GTEx naive fibroblast eQTL data (Fig. 3e), though the geneis highly
expressedinthe GTEx data (median transcripts per million (TPM) =111).
We note, however, that this eQTL was discovered in eQTLGen data with
tens of thousands of blood samples (Fig. 3e). This might suggest that
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Fig. 4| Fine-mapping eQTLs with epigenetic data. a, Enrichment eQTLs for
regulatory regions characterized by ChIP-seq for the two histone modifications
(H3K27ac and H3K4me3) under two different conditions (UNST, unstimulated;
PIC4h, Poly (I:C) 4-h stimulation). The error bars in the forest plot show 95%
confidence intervals (standard errors) of odds ratios using N = 10,748 genes as
independent samples (Methods). b, eQTL enrichment for genes with TATA-box
or CGlbetween TSS and 100 bp upstream. The error bars in the forest plots show
95% confidence intervals (standard errors) of odds ratios using N =10,748 genes
asindependent samples (Methods). ¢, Enrichment of lead eQTL variants for
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various TF motifs. The color of each point shows the average expression across all
cells and the point size shows the frequency of cells with CPM > O for each TF gene
inour fibroblast data. d, Locus zoom plot showing the RTP4 eQTL association
Bayes factors. The lead eQTL variant rs62292793T>A disrupts the putative IRF1
binding motif (M1882_1.02; CIS-BP v.1.02) upstream of the RTP4 gene. e, UMAPs
showing expression levels of IRF1 and RTP4. UMAP coordinates are identical to
Fig. 2a.f, UMAP showing eQTL effect size of RTP4. UMAP coordinates are identical
to Fig. 2a. CPM, counts per million; Prop. exp., proportion of cells the gene
expressed.

theeQTLsignalis presentin unstimulated conditions inimmune cells
(suchasinblood).

To compare our eQTLs with other datasets, we repeated the colo-
calization analysis between our stimulated fibroblast eQTLs and all
primary GTEx tissues®* as well as with immune cells (monocytes and
induced pluiripotent stem cell (iPSC)-derived macrophages) stimu-
lated using different conditions based on previous studies™. We found
that the naive GTEx fibroblast showed the highest prior probability of
colocalization (Extended Data Fig. 5and Methods).

Fine-mapping eQTLs with epigenetic data
We have also performed fine-mapping using epigenetic data (histone
modification chromatin immunoprecipitation followed by sequenc-
ing (ChIP-seq) of active promoters and enhancers) originating in
dsRNA-stimulation of human dermal fibroblasts*”’ (Methods). We identi-
fied that more than10% of the putative causal eQTL variants discovered
by the hierarchical model (Methods) are located in the cis-regulatory
regions characterized by the ChIP-seq data (Fig. 4a). Those variants
are especially enriched for promoter peaks characterized by H3K4me3
antibody in Poly(I:C)-stimulated cells (Fig. 4a). Importantly, our eQTLs
were also strongly enriched around the TSS, and the number of eQTLs
was reduced by 46% every 100 kb further away from the TSS (Fig. 4a).

We next tested whether promoter architecture affects the vari-
ability betweenindividuals. It was previously shown by us and others®*
that genes containing TATA boxes in their promoters tend to vary
more in transcription between species and conditions and between
individual cells responding to animmune stimulus, whereas promoters
containing CpGislands (CGls) tend to vary less and be transcriptionally
more homogenous. We observe that genes with TATA-containing pro-
moters are 1.4-times more highly enriched with eQTLs in comparison
with genes with CGI-containing promoters (Fig. 4b).

Lastly, using the eQTL variants fine-mapped based on ChIP-seq
annotations, we examined which transcription factor (TF) motifs were
disrupted by the lead eQTL variants (Methods). We found interferon

regulatory factors1and 4 (IRF1and IRF4) as well as REL and ATF4 were
significantly enriched (Fig. 4c). An example of putative TF binding
disruptionwas discovered inRTP4eQTL (Fig.4d), where the alternative
allele of a promoter-flanking eQTL variant (rs62292793T>A) may dis-
ruptanIRFI motifthat significantly reduces putative TF binding affin-
ity, whichsubsequently downregulates the RTP4 expression (Fig. 4e,f).
Furthermore, the TATA motif (TBP) is also found to be disrupted by
eQTL variants (Fig. 4c), further suggesting theimportance of TATAreg-
ulationin modulating the response and its variability among individu-
als, as previously suggested in the mammalian immune response®”
andin other systems®.

Colocalization with autoimmune and infectious disease
genome-wide association studies
One of the purposes of eQTL mapping is to uncover the target genes
andrelated cell states at each genetic locus implicated by genome-wide
associationstudies (GWASs) of common complex traits. Here, we tested
colocalization of our eQTLs with risk loci from 701 GWASs (each with
five or more genome-wide significantloci), of which 112 were broadly
immune-related, including autoimmune and chronicinflammatory dis-
eases such as Crohn’s disease and infectious diseases such as COVID-19
(Methods). We discovered 7,934 unique gene-trait combinations with
the posterior probability of a single shared causal variant between an
eQTLand a GWAS locus greater than 0.5. The combinations consisted
of 643 different GWAS traits and 988 unique genes. We observed an
excess of colocalized eQTLs forimmune-related traits over nonimmune
traits (Fig. 5a, P=2.8 107, and Methods), likely reflecting the known
involvement of innate immunity in each of the disease pathologies.
Wediscovered 48 primary and secondary response genes that were
specifically colocalized with 51 autoimmune and infectious disease
loci, some of which were colocalized with multiple traits (Fig. 5b). For
example, we detected an eQTL for the ETV7 gene, whichencodes a TF
inthe ETS family and plays akey role in hematopoiesis”. The eQTL was
colocalized with rheumatoid arthritis (posterior probability = 0.98)
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and hay fever, allergic rhinitis or eczema (posterior probability = 0.99)
(Fig. 5c). The gene is an ISG and the expression is upregulated during
secondary response (Fig. 5d). The lead eQTL variant (rs1998266T>C)
is shared with the GWAS traits, whose alternative allele C upregulates
gene expression in stimulated conditions and also increases the risks
ofthose GWAS traits (Fig. 5d). The alternative allele C also modifies the

binding motif of the TF ATF6 putatively bound at the promoter region
of ETV7,thereby potentially increasing the expression level (Extended
DataFig. 6a-c).

Lastly, we compared our colocalization results with those pro-
vided by Open Targets for 2,331 GWAS traits and 16 different eQTL
studies (Data availability). We discovered that 6,327 gene-trait pairs
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the COVID-19 GWAS (COVID-19 versus population) association Bayes factors as
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shows the expression levels of the OASI gene in fibroblasts. UMAP coordinates
areidentical to Fig. 2a. d, UMAP shows the eQTL effect size of the OAS1 gene at
rs10774671G>A. UMAP coordinates are identical to Fig. 2a. e, UMAP shows OAS1
expression level in PBMCs. UMAP coordinates are identical to Extended Data
Fig.7a.f, UMAP shows the eQTL effect size of the OASI gene at rs10774671G>Ain
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PBMCs. UMAP coordinates are identical to Extended Data Fig. 7a. g, Sequencing
coverage depth around the splicing variant rs10774671G>A, which creates three
different isoforms, two of which are not annotated in Ensembl 90. sScRNA-
seqreadsin fibroblasts were aggregated and stratified by the three different
genotype groups (GG, reference homozygote; GA, heterozygote; AA, alternative
homozygote). h, The 10x RNA-seq coverage depth of epithelial cells around OAS1
3’end in nasal brushing samples taken from 33 COVID-19-positive adult patients
was stratified and aggregated by the three genotype groups of rs10774671G>A as
demonstrated ing. UCL, University College London.

were unique and only found in our colocalization results (posterior
probability of colocalization > 0.5), whereas 1,607 gene-trait pairs are
sharedinboth datasets (posterior probability of colocalization > 0.5),
ofwhich 615 also overlap withthe GTEx fibroblast colocalization analy-
sis (Extended Data Fig. 6d).

Fine-mapping OAS1eQTL associated with SARS-CoV-2
infection

Inconjunction with the fibroblast system, we used two additional in vivo
systems (Fig. 6a) to further fine-map the 12q24.13 (OASI) locus that
was reported in a GWAS of SARS-CoV-2 positive-infected individuals
against population controls® (index SNP: rs10774671G>A). The locus
iscolocalized withthe OAS1eQTL infibroblasts with a posterior prob-
ability of 1.0 (Figs. Sb and 6b). OASIis asecondary response gene and is
highly expressed upon IFN-f (at2 handlater) and Poly(I:C) stimulation
(at 6 h) (Fig. 6¢). The alternative allele A of rs10774671 downregulates
the expression level (Fig. 6d).

We investigated our recently published PBMC scRNA-seq data*
obtained from 112 donors, including 84 COVID-19-positive individu-
als, and profiled using the CITE-seq approach®, as an independent
in vivo validation of OASI eQTL colocalization with GWAS locus for
COVID-19 susceptibility (Methods). There are 18 major blood cell types
annotated in this dataset (Extended Data Fig. 7a), of which myeloid
cells and certain T cell subtypes show higher expression of the sec-
ondary response genes discovered in our fibroblast data (Extended
DataFig.7b and Methods). As expected, OASI is highly expressed asa
secondary response gene in PBMCs (Fig. 6¢).Inaddition, we confirmed
that the OASI gene is also a strong eQTL in PBMCs and colocalizes
well with the COVID-19 GWAS locus with the posterior probability
of 0.99 (Fig. 6b). The GWAS index variant rs10774671G>A is the lead
eQTL variant in PBMCs whose alternative allele A is strongly nega-
tively correlated with OASI expression. This is especially clearin CD16"
monocytes, among other immune cell types (Fig. 6f and Extended
DataFig. 7a).
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The index SNP rs10774671 is known to be a splicing QTL*" that
disrupts the splicing motif right next to the last exon of the OASI gene
(Fig. 6g). In our fibroblast data, this variant also increased the intron
expression between the last two exons and created three different
isoforms (Fig. 6g), all of which are known to cause impaired OAS1
protein expression*’. These alternative isoforms are also observed in
nasal epithelial cells from 33 brushing samples from arecent COVID-19
cohort®. We confirmed that the alternative allele of the lead eQTL
variantinstimulated fibroblastsis associated with lower expression of
the OASI genein the epithelial cells and the occurrence of alternative
isoforms, as expected (Fig. 6h). This suggests that the in vitro stimula-
tion fibroblast systemis anappropriate model to study physiologically
relevant eQTLs in the context of infection, such as COVID-19.

In addition to the OASI eQTL, OAS3 eQTL in fibroblasts was also
colocalized with the COVID-19 GWAS locus (posterior probabil-
ity = 0.99) (Fig. 5b and Extended Data Fig. 7c). Because OASI and OAS3
are both ISGs, the expression patterns of OASI and OAS3 along the
innate immune response trajectory are expected to be very similar,
asindeed observed (Fig. 6¢c and Extended Data Fig. 7d). However, the
direction of the eQTL effect was opposite for the two genes: OASI gene
expression is downregulated by the alternative allele of the COVID-19
GWASindexSNPrs10774671G>A, whereas the expression level of OAS3
gene is upregulated by the alternative allele (Fig. 6d and Extended
DataFig.7e,f).

Discussion

In this work we developed GASPACHO, a statistical framework that
fulfils two tasks: firstly, to infer the trajectory of gene expression
over a dynamic process, and secondly, to model nonlinear dynamic
genetic effectsin everyindividual cell. Using GASPACHO, we integrated
scRNA-seq data from fibroblasts from 68 donors triggered by innate
immune stimuli and obtained a low-dimensional gene expression
spacerepresenting theresponse dynamics across stimulated cells. This
approach provides us with a unique map of interindividual transcrip-
tional variation at single-cell resolution, which was often linked with
noncoding regulatory regions (such as TF binding sites), previously
profiled during fibroblast stimulation?. This approach discovered
1,275eQTL loci, of which 988 were colocalized with one or more GWAS
loci of autoimmune and infectious diseases, including COVID-19 at
the OASIlocus. We also found 1,607 colocalizations shared with the
Open Targets colocalizations database, of which 615 also overlap with
the GTEXx fibroblast colocalization analysis. We note here that some
of the colocalizations in the Open Targets database are likely to be
missed because Open Targets has only tested colocalizations against
genome-wide significant loci in GWAS traits (P< 5 x 10°%), while we
tested colocalizations for all GWAS loci (regardless of their Pvalues)
overlapping with 1-megabase (Mb) cis-windows of genes tested for
eQTL mapping.

Previous studies used scRNA-seq profiling of tissues composed of
several cell types from dozens to hundreds of donors, and performed
geneticassociation mapping of cell-type-specific expressionby using a
pseudo-bulk approach™?, GASPACHO, as well as cellRegMap™, allows
mapping of dynamic genetic effects of gene expression in individual
cells. These two approaches are particularly suitable when considering
a continuous genetic effect along cellular states rather than several
discrete cell populations or states. GASPACHO and CellRegMap both
incorporate context-specific donor (donor by context interaction)
effectstoadjust for dynamic genetic effects, for abetter statistical cali-
bration (because dynamic cellular states, such asimmune responses,
often vary between donors due to environmental and trans genetic
effects). However, CellRegMap and GASPACHO differ in their model
assumptions on genetic effects: CellRegMap assumes linearity on
context-specific genetic (genotype by context interaction) effects,
while GASPACHO assumes that those effects are nonlinear, suggesting
GASPACHO is more flexible, yet computationally intensive (section 3

ofthe Supplementary Notes). Therefore, further studies are required
toimplement faster GP regressionin modern computational environ-
ments, such as GPU. Lastly, the GPLVM implemented in GASPACHO
is currently applicable for rapid analysis of dozens of thousands of
cells. An accelerated version of GPLVM will be needed in the future for
scaling, and a cutting-edge Bayesian inference technique, such as the
stochastic variational inference implemented in GPy, should be able
toachieve this goal.

Theinnateimmuneresponseisagenetic programthatis elicited by
most cellsinvaded by pathogens; however, the response varies between
infected cellsin terms of magnitude, the specific set of regulated genes
and their cellular fate. This variability is observed both between cells
originating from different lineages and between individual cells from
the same homogenous cellular population® . Furthermore, genetic
variation has been shownto significantly modulate theinnateimmune
response in many previous studies and its dynamics are thought to be
nonlinear*®**5, GASPACHO is thus particularly useful to study how
genetic effects are associated with different stages and cellular tra-
jectories during this response, as demonstrated, for example, in our
analysis of primary and secondary response genes. Furthermore, we
also observe eQTLs that appear only during stimulation, as previously
suggested using bulk RNA-seq*®>*, but without the need to partition
samplesinto discretized conditions.

Ourinvitroimmune stimulation of dermal fibroblasts canbe used
asamodel system to study genetic effectsininnateimmune responses
in primary cells. Using this analysis, we detected 6,327 colocalizations
between eQTLs and various autoimmune and infectious disease GWAS
loci. While fibroblasts are not the primary cellular target of SARS-CoV-2
infection (which mostly targets epithelial cells), we detected a colocali-
zation between OAS1eQTL and COVID-19 GWAS locus, which we then
also found in PBMCs from patients with COVID-19. This colocalization
was also previously found using bulk RNA-seq*.. Our findings sug-
gestan association between a particular risk variant (rs10774671) and
COVID-19infection and severity, and that this risk allele may generate
alternative isoforms of the OASI gene in nonclassical monocytes in
peripheralblood. We further found that these alternative isoforms are
expressed in nasal epithelial cells from a set of patients with COVID-19
carrying the alternative allele. Since the alternative allele is also arisk
allele in COVID-19 GWAS, this implies that these OASI RNA splicing
isoforms may be associated with impaired OASI1 protein expression
and viral clearancein host cells, as previously suggested in other viral
diseases****. Interestingly, we also observe a colocalization in this locus
between OAS3eQTL and COVID-19 GWAS locus; however, in this case,
the alternative allele of rs10774671is linked to anincrease in the OAS3
gene expression level. Further studies are needed to mechanistically
determine the impact of OAS3 expression on SARS-CoV-2 infection.

Insummary, our study demonstrates how coupling single-cell tran-
scriptomics with astatistical approach canidentify dynamic nonlinear
effects of genetic variants across cellular contexts.
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Methods

Ethical compliance

This project was approved by the Wellcome Sanger Institute Animal
Welfare and Ethical Review Body and complied with all relevant ethi-
calregulations regarding animal research and human studies. Human
cells were obtained from HipSci**, where they were collected from
volunteers recruited from the National Institute for Health and Care
Research (NIHR) Cambridge BioResource (written consent was given).
Human skin profiling was performed in accordance with protocols
approved by the Newcastle Research Ethics Committee (REC approval
08/H0906/95+5). Patients with a confirmed diagnosis of COVID-19 were
recruited from Addenbrooke’s and Royal Papworth hospitals under
ethical approval obtained from the East of England Cambridge Central
Research Ethics Committee (NIHR BioResource, RECno.17/EE/0025).
Informed consent was obtained for all participants.

Dermalfibroblast cell culture and stimulation
Primary dermal fibroblast cells from HipSci were used (http://www.
hipsci.org/). The cells were derived from healthy individuals spanning
arange of ages (from 30 to 79 and 57.2 on average) and both sexes (40
female and 28 male). Following a similar protocol used in our previ-
ous work?, cells were cultured in DMEM (high glucose, pyruvate, Life
Technologies), with10% FBS, GlutaMAX and 1% penicillin-streptomycin.
In each experimental batch, we cultured in parallel cells from three
different individuals. Cells were split the day before the experiment
into separate wells and on the day of experiment were stimulated with
either dsRNA (0.5 pg ml™ high-molecular-weight rhodamine-labeled
Poly(I:C) (Invivogen, tlrl-pic), transfected with 1 pl ml™ lipofectamine
2000 (Thermo Fisher, 11668027), for 2 or 6 h) or 1,000 U ml™ human
recombinant IFN-f3 (11410-2, PBL), for2 or 6 h, or left untreated. In this
manner, for eachindividual, we obtained five separate conditions.
After the relevant period of time, cells were detached by trypsi-
nization and resuspended in PBS. Samples from the three individuals
with the same treatment were then mixed (for example, ‘unstimulated’
cells from the three donors would be pooled together). The primary
aim of this mixing step was to reduce downstream experimental vari-
ability between the three donors, while simultaneously streamlining
the collection stage. In this manner, we obtained plates for each of the
five conditions, with each having a mixture of all three individuals.

Sorting and single-cell library preparation

Cells were sorted on a Becton Dickinson Influx into 96-well plates
containing 2 pl per well of lysis buffer, as described in the Smart-Seq2
protocol®, or in our previous work”. Importantly, each 96-well plate
contained cells from the same condition of all three individuals used for
each experimental batch. Single cells were sorted individually (using
FSC-W versus FSC-H), and apoptotic cells were excluded using DAPI.
Rhodamine-positive cells were selected in the Poly(I:C) treatments. Cells
fromeachthree-plex cell pool were sorted across four plates. Reverse tran-
scriptionand complementary DNA amplification were performed accord-
ingtothe Smart-Seq2 protocol (Picellietal.,2014), and library preparation
was performed using an Illumina Nextera kit. Samples were sequenced
using paired-end 75-bp reads on an lllumina HiSeq 2500 machine. For
library preparation, cells were loaded into 384-well plates. We note that
cellsinone of the four stimulated conditions were assigned in a 384-well
platein conjunctionwith cells in naive condition (rows C, Hand M).

Smart-Seq2 data preprocessing and quality control

All sequence data were aligned to human genome assembly GRCh38
using STAR (v.2.5.3a; https://github.com/alexdobin/STAR/releases)
and ENSEMBL human gene assembly 90 as the reference transcrip-
tome. We performed adapter trimming of Tn5 transposon and PCR
primer sequences using skewer (v.0.1.127; https://github.com/relip-
moc/skewer) before alignment. Following alignment, we used feature-
Counts (v.1.5.3; http://subread.sourceforge.net/) to count fragments

for each annotated gene. In total, we observed 58,394 cells, of which
22,188 cells passed the quality control criteria: the minimum number of
sequenced fragments (>10,000 autosomal fragments), the minimum
number of expressed genes (>500 autosomal genes), mitochondrial
fragment percentage (<20%) and the library complexity (percentage
of autosomal fragment counts for the top 100 highly expressed genes
<30%). We also performed demuxlet** (v.0.1.0; https://github.com/
statgen/demuxlet) to identify the genetic origin of each cell as well as
toremove doublets using the genotype data from HipSci.

Genotype data

We obtained the SNP genotype data from HipSci®* (Data availability).
We also genotyped 112 COVID-19 PBMC samples using the Affymetrix
Axiom UK Biobank array (Data availability). We converted the genome
coordinates from hgl9 to GRCh38 using CrossMap (v.0.5.2; http://cross-
map.sourceforge.net/). We then performed the whole-genome impu-
tation using Beagle (v.5.1; https://faculty.washington.edu/browning/
beagle/beagle.html) withthe reference panel from the 1000 Genomes
Project (Data availability).

Cell viability prediction

The cell viability was predicted by the web-based tool CEVIChE (https://
saezlab.shinyapps.io/ceviche/). Because the tool is designed for bulk
RNA-seq data, we aggregated gene expression levels for neighboring
cellsbased onthe UMAP in Fig. 2a. We constructed 30 x 30 equispaced
grids and took geometric means of logCPM (log of counts per million)
values within each grid.

GPLVM

The GASPACHO framework incorporated a GPLVM as a core model to
estimate the latent variables and model parameters subsequently used
inthe spatial DE analysis and eQTL mapping. We assumed that the gene
expression vector y; = (y;i=1,... ,N)" for the gene j across N cells is
independently drawn from

¥j ~ N@; + 2y}, 02 )
a; ~ N(0, 07K KsKx)
¥y ~ N, 02 A)

where a; is a baseline GP governed by three different kernel matrices,
periodic kernel matrix Ky for the cell cycle state () and two other
squared exponential kernel matrices K and Ky for unknown batch
effects (B) and the target cell state (X), respectively. Here, Z isadesign
matrix for the known covariates, such as donor and sequencing plates
(Fig. 1b), and y; is arandom effect to adjust the known confounding
effects whose mean and variance were defined by ¢ and the diagonal
matrix Asharedacrossallgenes j =1, ..., /. Theresidual expression was
determined by the gene-specific residual variance g2 and the
cell-specific residual variance 2 = diag(w;i = 1, ..., N). The variance of
the GP and random effect for gene j was properly scaled by the
gene-specific residual variance g2

Themodel parameters {A, 2, 32, {}and the latent variables {6, B, X}
were inferred by maximizing the marginal likelihood

J
1O.8X4,0,20=]] / PO, )PPy, daydy;,

J=1

where £ = diag(g/%;j =1,....J). We used the L-BFGS algorithm with the
analytic gradient of the likelihood function with respect to the param-
eters and the latent variables. In reality, the kernel matrices are not
tractable for large N; we computed the Titsias bound using the sparse
GP” to approximate the above likelihood (see section 1.3 of the Sup-
plementary Notes for more details).
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GP mixture model for gene classification

We employed a GP mixture model to perform the DE analysis in the
target cell-state space defined by X which was estimated by the GPLVM.
Specifically, we introduced one extra GP 3, for the kth differentially
expressed gene group (k=1,...,K) towhich agenejbelongs:

Vi ~ N + 8B, +2y;,07282)
a; ~ N(0, 02K Kp)
By ~ N(0,07K,)
¥ ~ N, 02 A)

i ~ N(0,1)

Here, the effect size of the GP was properly scaled by a coefficient
6, to allow the GP tobe both positively and negatively correlated with
the gene expression. The model parameters {4, €2, 37, {} and the latent
variables {6, B, X} were replaced by the estimators of the GPLVM. Then,
we maximized the likelihood of a finite mixture of GPs:

L(my, ..., 1w, By, -, Br)

J K
= ,Ul El (Y, B, v 6 )p(app( Bp(v)p(ix)datdy;ddj
withrespect to mand g, for k =1, ...,K. Note that the number of total
mixture components K is fixed in the currentimplementationand K =3
was used in the fibroblast data. We used the sparse approximation to
make the likelihood tractable (see section 1.4 of the Supplementary
Notes for more details). Note that this model can be readily extended
to classify dynamic eQTL effect sizes into finite spatial patterns (see
section1.4.1of the Supplementary Notes).

For the pseudotime analysis, we computed the posterior mean
E[Byy,....y/] for the kth component, which provided the underlying
cellular states regarding the primary and secondary innate immune
responses.

GP regression for association mapping

We employed a GP regression model to map eQTLs in the target
cell-state space defined by X which was estimated by the GPLVM. Spe-
cifically, we introduced one extra GP 8, for the genejmultiplied by the
lth genetic variant g, = (g;,...,.gw)" whose ith element g is alternative
allele dosages for the individual i as a gene-environment interaction:

Vi~ N(a; + By © g + 2y, 012 12)
a; ~ N(0, 0;°K ;K Kx)
Byt ~ N(0,6,°0;2(11" + Ky)
Vi ~ N 0,2 A)

Here the eQTL effect size was properly scaled by a coefficient &,
to allow for controlling of the genetic contribution on the expression
level. Themodel parameters{A, 2, ¥,{}and thelatent variables {6, B, X}
were replaced by the estimated values obtained by the GPLVM. The
Bayes factor of genetic association can be obtained by:

_ S pjilag, B, vip(@)p( Bip(yy)da;dB;dy;
S p(yjlag. By = 0,ypplapp(y)da;dy;

where we set 6, = 0.1 (see section 1.5 of the Supplementary Notes for
more details).

As is implemented in CellRegMap, our model can also be
extended to take the context-specific donor (context-by-donor
interaction) effect into account. Here, the gene expression model
canbe written as:

Ny
Y ~N<aj +[3j,®g,+Zyj+ZﬁjG)z,-,oj29)
i=1

2 .
ﬁj ~ N(O,é'dxc O}ZKX); = 1, ,Nd,

where f; denotes an additional GP for the individual i, z; denotes the
indicator vector to specify which cellsbelong to the individualiand Ng4
denotes the number of donors in the data. The additional variance
parameter 8, for the context-by-donor interaction effect is estimated
under the null model using all genes (see section 1.5.1 of the Supple-
mentary Notes for more details). All the real data analyses using the
fibroblast datain this manuscript were based on the Bayes factors with
this context-specific donor effect.

The eQTL effect size was estimated using the posterior distribution
p(Bily) = p(y;| Bip( B;) and the posterior mean £[B;| y;] was computed
foreachvariant/and used for the visualization on aUMAP (see section
1.5.2 of the Supplementary Notes for more details).

Hierarchical model for eQTL mapping and enrichment analysis
We tested genetic variants whose MAF is greater than 0.05 in a1-Mb
cis-regulatory window centered at each gene TSS. To control the FDR
in a Bayesian framework, we used the hierarchical model® to obtain
the posterior probability that ageneis an eQTL as well as the posterior
probability that a variant is an eQTL variant within the cis window.
The model allows incorporating various genomic annotations in the
gene-level and variant-level as demonstrated previously®. We used the
ChIP-seq peak annotations obtained by Hagai et al.”’ in conjunction
with TSS proximity to estimate the contribution of epigeneticinforma-
tiontotheeQTL variant discovery (see section2.1of the Supplementary
Notes for more details). Note that we only consider genes expressed
inatleast10% of the cells, resultingin a tested dataset 0of 10,748 genes.
We did notintroduce the gene-level prior probability to weight highly
expressed genes for the eQTL discovery.

eQTL enrichment in differentially expressed genes and other
annotations

The enrichment analysis was carried out based on the posterior prob-
ability Z;that the genejis an eQTL obtained from the hierarchical model.
We then computed a2 x 2 table using a corresponding binary annota-
tion X; (if the gene j belongs to some annotation, for example, a
TATA-box, then X; = 1,and otherwise X; = 0) or alternatively the poste-
rior probability X; € [0,1] that the gene/j is a differentially expressed
gene (one of multiple differentially expressed gene categories defined
above), such that

J
1-k 1-0)y k1
Tu=Y1-x)""a-2)""x/z
=

for k,[=0,1. From the 2-by-2 table T, we computed the log
odds ratio r=log(TooTu/(ToiTio)) and its standard error
Var(r) = (/T + 1/Toy +1/Tyo + 1/Ty;) to perform hypothesis testing.
The confidenceinterval of the logoddsratiowas givenby r + 1.96+/Var(r).
We also computed the Pvalue from the X? statistic x2 = r2/Var(r).

Ifthe occurrence of eQTLs and an annotation X were confounded
by afactor C (such as expression level for a gene), we split genes into
100 quantile bins according to the confounding factor C to compute
thelogoddsratioanditsstandard error for each bin as demonstrated
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above, and then we combined them using the inverse variance method
to derive the meta statistic for an adjusted enrichment statistic.

eQTL sharing with GTEx tissues

We used the pairwise hierarchical model**¢ to jointly map eQTLs in two
different cell types (asimilar approach to the pairwise (GWAS model*).
We employed the association Bayes factor at each variant for each gene
to compute the regional Bayes factorsin a cis region of 1 Mb centered
atthe TSS under the following five different hypotheses:

H,:ageneisnotaneQTLin cell/tissue typesland2.

H:ageneis an eQTL in cell/tissue type 1, but not in cell/tissue

type 2.

H,:a geneis an eQTL in cell/tissue type 2, but not in cell/tissue

typel.

Hy:ageneisaneQTLincell/tissue typesland 2 withtwoindepend-

ent putative causal variants.

H,:ageneis an eQTL in cell/tissue types 1 and 2 with the shared

putative causal variant.

Thoseregional Bayes factors were used in a hierarchical model to
estimate prior probabilities that eQTLs are shared between two cell
types (see section 2.2 of the Supplementary Notes for more details).

The hypothesis testing of eQTL enrichment in different DE cat-
egories, which are also colocalized with other eQTLs (such as GTEx
fibroblasts), was performed by computing the pseudo counts:

J -0 [
1-k; 1 3 k, (4
Tkl:Z(l_Xj)( )(Zj()+Zj( )) )(j(zj( ))
J=1

for k.= 0,1, where X; denotes the posterior probability that the gene

Jjis differentially expressed, Z" denotes the probability that the gene
JjisaneQTLinour dataand notinaGTExtissue, Z* denotes the prob-
ability that the genejis an eQTL in our data and a GTEx tissue and not
sharing the putative causal variant, and Zj(‘” denotes the probability
thatthegenejisaneQTLbothinourdataandaGTExtissue and colocal-
ized. The oddsratio and its standard error were computed as described
inthe section ‘eQTL enrichment in differentially expressed genes and
otherannotations’

Annotating TATA and CpG genes

To look for TATA-box motifs in gene promoters, we used TATA-motifs
from CIS-BP (Data availability). We used the CpG annotation (Data
availability) fromthe UCSC Genome browser to search for genes whose
promoters overlap witha CGI. Inboth cases, we used the region 100 bp
upstream from the TSS as the promoter region and referred to these
genes as TATA genes and CpG genes, respectively.

eQTL variant enrichment at TF motif's
The hierarchical model provided the posterior probability that each
variant/inthecis-regulatory region for the genejis the eQTL Z;, so that
>, Zy = 1where L is the number of variants in the cis window. We first
selected the lead eQTL variant according to the posterior probability
foreachgenej. We then used the position weight matrices of TF motifs
in CIS-BP (Data availability) to call motifs overlapping with lead eQTL
variants as described elsewhere®.

To perform the hypothesis testing that a TF motifis significantly

overlapping with eQTL variants, weset Z; = max {Z;}and X;tobe the

binary variable whose valueis X;=1if thelead eQTL variant /is overlap-
ping witha TF motif; otherwise, X;= 0. We then computed the 2 x 2 table
to perform the enrichment analysis as described in the section ‘eQTL
enrichmentin differentially expressed genes and other annotations’.

GWAS summary statistics
GWAS summary statistics were obtained from Open Targets which
collected and harmonized summary statistics from the GWAS Catalog,

FinnGen and UK Biobank (in total, 4,744 traits) (Data availability).
We also downloaded summary statistics of four different
COVID-19-related traits for allsamples excluding 23andMe (‘Very severe
respiratory confirmed covid vs. population’,‘Hospitalized covid vs. not
hospitalized covid’, ‘Hospitalized covid vs. population” and ‘Covid vs.
population’ in release 5) from the COVID-19 Host Genetics Initiative
(Dataavailability). We selected 701 GWAS traits out of 4,748 traits with
the criterion of five or more genome-wide significant loci, of which 112
were broadly immune-related, including autoimmune and chronic
inflammatory diseases as well as infectious diseases.

Colocalization with GWAS traits

We used the same pairwise hierarchical model as in the section ‘eQTL
sharing with GTEx tissues’ to perform the GWAS colocalization analysis,
where the prior probabilities of the pairwise hierarchical model were
fixedas {I1;, IT,, ¥;,} = {0.2, 0.05, 0.01}so that we can compare different
studies with different statistical power to detect GWAS associations
duetovaryingsamplesizes. Here, 17, denotes the prior probability that
ageneisaneQTL, 17,denotes thatagenomicregion for the correspond-
ing gene (a1-Mb window centered at TSS) is a significant GWAS locus
and ¥, is a prior probability that the eQTL and the GWAS locus are
colocalized. Tofit themodel, we converted the effect sizes and standard
errors of each GWAS traitinto Bayes factors using Wakefield’s approxi-
mation*®. See section 2.3 of the Supplementary Notes for more details.

PBMC data analysis and eQTL mapping

We used human PBMC scRNA-seq data® from 112 donors, including 84
COVID-19-positive individuals, profiled with the CITE-seq approach
from 10x Genomics. We reduced the full GASPACHO approach to
accommodate the PBMC single-cell data of over 700,000 cells in a
reasonable time scale. The kernel functions used in the model were
restricted to the linear kernel without the cyclic kernel for the cell cycle
effect. The latent factors were estimated with the covariates of the num-
ber of genes expressed, the number of mapped reads, the sequencing
center, sex, age, COVID-19 status, COVID-19 severity, patient ID and the
first three genotype principal components. The latent factors were
then used to define the two GPs

a; ~ N(0, g2XXT)
Bt ~ N(O, 8, 2(117 + XXT))

for the intercept and the eQTL effect size of variant [ for genej.

0ASIlocus analysis using COVID-19 nasal brushing samples

To fine-map the OASI locus in cells in vivo infected with COVID-19,
we used human single-cell data of 33 nasal brushing samples from
patients with COVID-19 from a recent work?, profiled using CITE-seq.
We used the aligned bam files to quantify allele-specific expression
at rs10774671 using RASQUAL allele-specific expression caller”. The
genotypes were assigned by fitting a binomial distribution on the
allele-specific expression with probability parameters p ={0.01, 0.5,
0.99} for reference homozygote, heterozygote and alternative homozy-
gote, respectively. Weinferred that there are three reference homozy-
gotes, 18 heterozygotes and 12 alternative homozygotes at rs10774671
in this dataset.

Reporting summary
Furtherinformation onresearch designisavailable inthe Nature Port-
folio Reporting Summary linked to this article.

Data availability
All Smart-Seq2 cram files of our fibroblast data are available from the
EuropeanNucleotide Archive (AccessionID: PRJEB20147). The genotype
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data of fibroblast samples are under managed access and available
through the HipSci portal (https://www.hipsci.org/data). The lines
usedinthis study have the identifiers: HPSI0114pf-eipl, HPSI0114 pf-fikt,
HPSI0114pf-joxm, HPSI0114pf-lexy, HPSIO114pf-rozh, HPSI0114pf-vabj,
HPSI0114pf-vass, HPSI0114pf-zoxy, HPSIO115pf-gifk, HPSI0115pf-melw,
HPSIO115pf-zihe, HPSI0214pf-feec, HPSI0214pf-heja, HPS10214 pf-pelm,
HPSI0215pf-deyz, HPSI0215pf-fawm, HPSI0215pf-hipn, HPSIO
215pf-oilg, HPS10314pf-bubh, HPSI0314pf-cuhk, HPSI0314pf-qonc,
HPSI0314pf-wigw, HPSI10314pf-xugn, HPS10414pf-ceik, HPSI
0414pf-gesg, HPS10414pf-naju, HPSI0414pf-oaqd, HPSI0514pf-fiaj,
HPSI10514pf-kuco, HPS10514pf-puie, HPSI0514pf-rutc, HPSIO
514pf-sohd, HPSI0514pf-vuna, HPSI0614pf-ciwj, HPSI0614pf-miaj,
HPSI10614pf-oicx, HPSI0714pf-pipw, HPSI0913pf-diku, HPSIO
913pf-eika, HPS10913pf-lise, HPSI0914pf-euts, HPSI0914pf-kajh,
HPSI10914pf-laey, HPSI1013pf-garx, HPSI1013pf-jogf, HPSI1013pf-pamy,
HPSI1013pf-sebz, HPSI1013pf-wopl, HPSI1013pf-wuye, HPSI1014 pf-qayj,
HPSI1014pf-sehl, HPSI1014pf-tixi, HPSI1014pf-toss, HPSI1014pf-tuju,
HPSI1014pf-vils, HPSI1113pf-bima, HPSI1113pf-dons, HPSI1113pf-eofe,
HPSI1113pf-ieki, HPSI1113pf-oaaz, HPSI1113pf-qolg, HPSI1113pf-wahn,
HPSI1113pf-wetu, HPSI1114pf-ualf, HPSI1213pf-hehd, HPSI1213pf-nusw,
HPSI1213pf-tolg and HPSI1213pf-xuja. The genotype data of COVID-
19 PBMC samples around OAS1 gene are available at Zenodo®’. The
genome-wide genotype data are available upon request under the
managed access of the NIHR BioResource’s Data Access Committee.
The annotation of the CpG site was downloaded from the UCSC website
(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cpgls-
landExt.txt.gz). The position weight matrices (PWMs) of transcription
factor motifs were obtained from CIS-BP (http://cisbp.ccbr.utoronto.
ca/bulk.php). The PWMs used to find TATA-box in the gene promotor
have the following identifiers: M1641_1.02, M2191_1.02, M4011_1.02,
M4266_1.02, M6502_1.02, M1642_1.02, M4010_1.02, M4014 1.02 and
M4708_1.02. Open Targets GWAS summary statistics are available from
the GWAS Catalog (https://www.ebi.ac.uk/gwas/), FINNGEN (https://
www.finngen.fi/en/access_results) and UK Biobank (https://www.
nealelab.is/uk-biobank). COVID-19 GWAS summary statistics (release
5) are available from the COVID-19 Host Genetics Initiative (https://
www.covidl9hg.org/results/r5/). The Open Targets colocalization data
are obtained from the website (https://ftp.ebi.ac.uk/pub/databases/
opentargets/genetics/210608/). The eQTL summary statistics of GTEx
48 tissues as well as immune cells (iPSC-derived macrophages and
monocytes) under different stimulation conditions were obtained from
the eQTL catalog (http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/).
The 1000 Genomes Project VCF data (version: shapeit2_integrated_
snvindels_v2a_27022019.GRCh38.phased) were obtained from: http://
hgdownload.soe.ucsc.edu/gbdb/hg38/1000Genomes/. The summary
statistics of fibroblast eQTLs are available from Zenodo (https://doi.
org/10.5281/zenodo.7680146).

Code availability
GASPACHO (v.1.0.0), example data and script code to reproduce the
results are available at Zenodo’'.

References

43. Picelli, S. et al. Full-Length RNA-Seq from single cells using
smart-seq2. Nat. Proto. 9, 171-181(2014).

44. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing
using natural genetic variation. Nat. Biotechnol. 36, 89-94 (2018).

45. Kumasaka, N., Knights, A. J. & Gaffney, D. J. High-resolution
genetic mapping of putative causal interactions between regions
of open chromatin. Nat. Genet. 51, 128-137 (2019).

46. Young, A. M. H. et al. A map of transcriptional heterogeneity
and regulatory variation in human microglia. Nat. Genet. 53,
861-868 (2021).

47. Pickrell, J. K. et al. Detection and interpretation of shared genetic
influences on 42 human traits. Nat. Genet. 48, 709-717 (2016).

48. Wakefield, J. Bayes factors for genome-wide association studies:
comparison with P-values. Genet. Epidemiol. 33, 79-86 (2009).

49. Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-mapping cellular
QTLs with RASQUAL and ATAC-seq. Nat. Genet. 48, 206-213 (2016).

50. Kumasaka, N. COVID-19 PBMC sample information and the VCF
file of variants around OAS1 gene. Zenodo https://doi.org/10.5281/
zenodo.7866287 (2023).

51. Kumasaka, N. natsuhiko/GASPACHO-v1.0.0. Zenodo https://doi.
org/10.5281/zenodo.7866223 (2023).

Acknowledgements

N.K., R.R., K.B.M., TH. and S.AT. were supported by Wellcome

Sanger core funding (grant no. WT206194) and the Human Induced
Pluripotent Stem Cell Initiative. T.H. was supported by the Israel
Science Foundation (grant no. 435/20) and by the Chan Zuckerberg
Initiative (Single-Cell Analysis of Inflammation, grant no. DAF2020-
217532). R.R. was supported by the BBSRC Doctoral Training
Programme. F.J.C.-N. and B.G. were supported by Wellcome (grant

no. 206328/Z/17/Z) and MRC (grant no. MR/S036113/1). P.A.L. was
supported by the Evelyn Trust (grant no. 20/75) and the UKRI/

NIHR through the UK Coronavirus Immunology Consortium.

K.B.W. acknowledges funding from University College London, Birkbeck
MRC Doctoral Training Programme. M.Z.N. acknowledges funding from
an MRC Clinician Scientist Fellowship (grant no. MR/W00111X/1) and
the Rutherford Fund Fellowship allocated by the MRC and from the UK
Regenerative Medicine Platform 2 (grant no. MR/5005579/1). M.Z.N.
and K.B.M. have been funded by the Rosetrees Trust (grant no. M944)
and from Action Medical Research (grant no. GN2911). We thank M. D.
Morgan for careful reading of the manuscript and data sharing.

Author contributions

R.R.,0.S., T.H. and S.AT. designed the experiments of fibroblast
stimulation and single-cell sequencing. R.R., S.P., R.B., C.G., S.N.B.
and T.H. performed the experiments. N.K. and S.AT. developed the
analytical approach. N.K., R.R., N.H. and T.H. analyzed the data.
N.I.P. provided the HipSci genotype data. J.S. and M.G. provided
the Open Targets GWAS summary statistics. K.B.M., P.A.L., F.J.C.-N.,
B.G., J.L.B., K.BW., MY,, M.Z.N,, E.S. and M.H. performed genotyping
of the PBMC samples. G.R., M.H., and J.M. provided the processed
single-cell RNA-seq data of the PBMC samples. M.Y., K.B.W., M.Z.N.
and K.B.M. provided the data from the COVID-19 nasal brushing
sample. N.K., K.P. and N.H. analyzed the COVID-19 nasal brushing
data. N.K., T.H. and S.A.T. wrote the manuscript.

Competinginterests

S.AT. has received remunerations for consulting and Scientific
Advisory Board work from TransitionBio, GlaxoSmithKline, Qiagen
and Foresite Labs over the past 3years and is an equity holder of
TransitionBio. All other authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41588-023-01421-y.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41588-023-01421-y.

Correspondence and requests for materials should be addressed to
Tzachi Hagai or Sarah A. Teichmann.

Peer review information Nature Genetics thanks the anonymous
reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Genetics


http://www.nature.com/naturegenetics
https://www.hipsci.org/data
https://www.hipsci.org/lines/#/lines/HPSI0114pf-eipl
https://www.hipsci.org/lines/#/lines/HPSI0114pf-fikt
https://www.hipsci.org/lines/#/lines/HPSI0114pf-joxm
https://www.hipsci.org/lines/#/lines/HPSI0114pf-lexy
https://www.hipsci.org/lines/#/lines/HPSI0114pf-rozh
https://www.hipsci.org/lines/#/lines/HPSI0114pf-vabj
https://www.hipsci.org/lines/#/lines/HPSI0114pf-vass
https://www.hipsci.org/lines/#/lines/HPSI0114pf-zoxy
https://www.hipsci.org/lines/#/lines/HPSI0115pf-gifk
https://www.hipsci.org/lines/#/lines/HPSI0115pf-melw
https://www.hipsci.org/lines/#/lines/HPSI0115pf-zihe
https://www.hipsci.org/lines/#/lines/HPSI0214pf-feec
https://www.hipsci.org/lines/#/lines/HPSI0214pf-heja
https://www.hipsci.org/lines/#/lines/HPSI0214pf-pelm
https://www.hipsci.org/lines/#/lines/HPSI0215pf-deyz
https://www.hipsci.org/lines/#/lines/HPSI0215pf-fawm
https://www.hipsci.org/lines/#/lines/HPSI0215pf-hipn
https://www.hipsci.org/lines/#/lines/HPSI0215pf-oilg
https://www.hipsci.org/lines/#/lines/HPSI0215pf-oilg
https://www.hipsci.org/lines/#/lines/HPSI0314pf-bubh
https://www.hipsci.org/lines/#/lines/HPSI0314pf-cuhk
https://www.hipsci.org/lines/#/lines/HPSI0314pf-qonc
https://www.hipsci.org/lines/#/lines/HPSI0314pf-wigw
https://www.hipsci.org/lines/#/lines/HPSI0314pf-xugn
https://www.hipsci.org/lines/#/lines/HPSI0414pf-ceik
https://www.hipsci.org/lines/#/lines/HPSI0414pf-gesg
https://www.hipsci.org/lines/#/lines/HPSI0414pf-gesg
https://www.hipsci.org/lines/#/lines/HPSI0414pf-naju
https://www.hipsci.org/lines/#/lines/HPSI0414pf-oaqd
https://www.hipsci.org/lines/#/lines/HPSI0514pf-fiaj
https://www.hipsci.org/lines/#/lines/HPSI0514pf-kuco
https://www.hipsci.org/lines/#/lines/HPSI0514pf-puie
https://www.hipsci.org/lines/#/lines/HPSI0514pf-rutc
https://www.hipsci.org/lines/#/lines/HPSI0514pf-sohd
https://www.hipsci.org/lines/#/lines/HPSI0514pf-sohd
https://www.hipsci.org/lines/#/lines/HPSI0514pf-vuna
https://www.hipsci.org/lines/#/lines/HPSI0614pf-ciwj
https://www.hipsci.org/lines/#/lines/HPSI0614pf-miaj
https://www.hipsci.org/lines/#/lines/HPSI0614pf-oicx
https://www.hipsci.org/lines/#/lines/HPSI0714pf-pipw
https://www.hipsci.org/lines/#/lines/HPSI0913pf-diku
https://www.hipsci.org/lines/#/lines/HPSI0913pf-eika
https://www.hipsci.org/lines/#/lines/HPSI0913pf-eika
https://www.hipsci.org/lines/#/lines/HPSI0913pf-lise
https://www.hipsci.org/lines/#/lines/HPSI0914pf-euts
https://www.hipsci.org/lines/#/lines/HPSI0914pf-kajh
https://www.hipsci.org/lines/#/lines/HPSI0914pf-laey
https://www.hipsci.org/lines/#/lines/HPSI1013pf-garx
https://www.hipsci.org/lines/#/lines/HPSI1013pf-jogf
https://www.hipsci.org/lines/#/lines/HPSI1013pf-pamv
https://www.hipsci.org/lines/#/lines/HPSI1013pf-sebz
https://www.hipsci.org/lines/#/lines/HPSI1013pf-wopl
https://www.hipsci.org/lines/#/lines/HPSI1013pf-wuye
https://www.hipsci.org/lines/#/lines/HPSI1014pf-qayj
https://www.hipsci.org/lines/#/lines/HPSI1014pf-sehl
https://www.hipsci.org/lines/#/lines/HPSI1014pf-tixi
https://www.hipsci.org/lines/#/lines/HPSI1014pf-toss
https://www.hipsci.org/lines/#/lines/HPSI1014pf-tuju
https://www.hipsci.org/lines/#/lines/HPSI1014pf-vils
https://www.hipsci.org/lines/#/lines/HPSI1113pf-bima
https://www.hipsci.org/lines/#/lines/HPSI1113pf-dons
https://www.hipsci.org/lines/#/lines/HPSI1113pf-eofe
https://www.hipsci.org/lines/#/lines/HPSI1113pf-ieki
https://www.hipsci.org/lines/#/lines/HPSI1113pf-oaaz
https://www.hipsci.org/lines/#/lines/HPSI1113pf-qolg
https://www.hipsci.org/lines/#/lines/HPSI1113pf-wahn
https://www.hipsci.org/lines/#/lines/HPSI1113pf-wetu
https://www.hipsci.org/lines/#/lines/HPSI1114pf-ualf
https://www.hipsci.org/lines/#/lines/HPSI1213pf-hehd
https://www.hipsci.org/lines/#/lines/HPSI1213pf-nusw
https://www.hipsci.org/lines/#/lines/HPSI1213pf-tolg
https://www.hipsci.org/lines/#/lines/HPSI1213pf-xuja
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cpgIslandExt.txt.gz
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cpgIslandExt.txt.gz
http://cisbp.ccbr.utoronto.ca/bulk.php
http://cisbp.ccbr.utoronto.ca/bulk.php
https://www.ebi.ac.uk/gwas/
https://www.finngen.fi/en/access_results
https://www.finngen.fi/en/access_results
https://www.nealelab.is/uk-biobank
https://www.nealelab.is/uk-biobank
https://www.covid19hg.org/results/r5/
https://www.covid19hg.org/results/r5/
https://ftp.ebi.ac.uk/pub/databases/opentargets/genetics/210608/
https://ftp.ebi.ac.uk/pub/databases/opentargets/genetics/210608/
http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/
http://hgdownload.soe.ucsc.edu/gbdb/hg38/1000Genomes/
http://hgdownload.soe.ucsc.edu/gbdb/hg38/1000Genomes/
https://doi.org/10.5281/zenodo.7680146
https://doi.org/10.5281/zenodo.7680146
https://doi.org/10.5281/zenodo.7866287
https://doi.org/10.5281/zenodo.7866287
https://doi.org/10.5281/zenodo.7866223
https://doi.org/10.5281/zenodo.7866223
https://doi.org/10.1038/s41588-023-01421-y
https://doi.org/10.1038/s41588-023-01421-y
https://doi.org/10.1038/s41588-023-01421-y
http://www.nature.com/reprints

https://doi.org/10.1038/s41588-023-01421-y

Technical Report

600

T
o
o
[Te)

Jouop Jad |92

&
o
<

|
o
o
™

T

o

N
N

100

6|01-4dETZTISAH
©)19-4deT60ISdH
Suop-JdeTTTISdH
nn-dpTOTISAH
asII4deT60ISdH
4BoldETOTISAH
|Y8s-3dpTOTISHH
Xx210-Jd¥T90ISdH
X114y TOTISdH
pYyos-jdyTS0ISdH
ubnx-JdyTE0ISdH
Blob-jJdeTTTISdH
2qas-JdeTOTISdH
»m:.EES_ma:
ae|-dyT60ISdH
wmey-4dSTZ0ISdH
MYIP-JdETE0ISAH
eldy-JdyT2Z0ISdH
SS0}dpTOTISAH
zee0-JdeTTTISdH
8J09-JdETTTISHH
fey-ydyTS0ISdH
ylex-4dyT60ISdH
w(ad-ydyTZ0ISdH
H199-4d ¥ TH0ISdH
00N-4dpTSOISdH
|dom-JdETOTISdH
zAap-JdSTZ0ISdH
293)-4dy TZ0ISdH
Bl10-4d5TZ0ISdH
M|3W-4dSTTOISdH
beo-jdy T#0ISdH
Imio-3dyT90ISAH
ayiz-4dSTT0ISdH
yzoi-JdyTTOISdH
DRIHAETTTISdH
x1eB-JdeTOTISdH
mc:o.aimo_mn_x
x84y TTOISdH
feiu-jdyT90ISdH
ewIiq-JdeTTTISHH
aind-JdyTSOISdH
6-4dSTTOISAH
[Reb-4dyTOTISHH
iqeA-JdyTT0ISdH
Bsab-jdyTH0ISdH
yang-ydy TE0ISAH
SSeA-JdpTT0ISdH
SIA-JdpTOTISIH
oNU-JdyTS0ISdH
ouob-dpTE0ISAH
eUNA-JdYTS0ISAH
udiy-jdsT20ISdH
-y TTOISdH
pUBY-deTZTISdH
wxol-dyTTOISdH
mBIm-Jdiy TE0ISH
nfeu-jdyTy0ISdH
|d19-JdyTTOISdH
SIn8-4dyT60ISAH
MSNU-dETZTISdH
uyem-JdeTTTISdH
mdid-ydyT20ISdH
Awed-ydgTOTISAH
8AnM-JdETOTISHH
mam-JdeTTTISdH
Ax0z-JdyTTOISdH
elnx-JdeTZTISdH

Immune response

Cell cycle

Batch (unknown)

IFN-beta 6h
Poly I:C 2h

Poly I:C 6h

Batch 1

(before Mar 2017)

Batch 2

UMAP 1

(after Mar 2017)

Extended Data Fig. 1| Data and quality controls. a. Barplot shows the number of cells for each donor (cell line). b. UMAPs calculated from the first 10 principal
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Extended Data Fig. 4 | Characteristics of mapped response eQTLs. a.
Distributions of Bayes factors from our fibroblast data for N =1million random
gene-variant pairs. Here we used all variants with MAF > 0% for the Bayes factor
calculation (not only variants with MAF > 5%). Here The bottom and top of each
box (Qland Q3) are the 25th and 75th percentile (the lower and upper quartiles,
respectively), and the band near the middle of the box is the 50th percentile
(the median). The ends of the whiskers are defined as follows: upper whisker =
min(max value, Q3 +1.5*IQR) and lower whisker = max(min value, Q1-1.5*IQR),
whereIQR = Q3-Qlis the box length. b. Mosaic plot shows the number of eQTLs
(local FDR =10%) in different MAF bins (column). We included the number

of non-eQTL (the top row of the plot coloured by gray) in comparison to the
number of eQTLs (bottom row coloured by green). c-d. The trend of posterior
probabilities of eQTLs or stationary genes (one of the 7 differential expression
categories) against gene expression levels. The line was estimated using logistic
regression where the response variable is the posterior probability greater than
0.9 against the expression quantile based on the average expression across

all cells for each gene. e. The number of eQTL genes stratified by the spatial

DE genes demonstrated in Extended Data Fig. 2d. f. Forest plot showing the

enrichment of the 1,275 eQTL genesin each of the 7 DE categories. The black dots

show non-adjusted eQTL enrichment, and the red dots show the enrichment

following adjustment for gene expression levels (Online Methods). The error
barsin the forest plot show 95% confidence intervals (standard errors) of odds
ratios using N =10,748 genes as independent samples (see Online Methods for
details). g. The number of eQTL genes colocalised with GTEx fibroblast eQTLs
inthe 7 different DE gene categories. h. Forest plot shows the enrichment of

the eQTL colocalised with GTEXx fibroblast eQTLs in the 7 different DE gene
categories. The error bars in the forest plot show 95% confidence intervals
(standard errors) of odds ratios using N = 10,748 genes as independent samples
(see Online Methods for details). i. UMAPs showing spatial distributions of eQTL
effect sizes estimated from the GP mixture model with 4 different spatial eQTL
categories (static, primary, secondary and unknown; Online Methods). UMAP
coordinates areidentical to Fig. 2a.j. The numbers of static and dynamic eQTLs
estimated from the GP mixture model. k. Heatmap showing the enrichment of
spatial eQTL categories for the 7 DE categories and the GTEXx fibroblast eQTLs.
Colour scale shows the odds ratio of enrichment and the size of dots denotes the
magnitude of Bonferroni-corrected P-values of the enrichment. The odds ratios
and corresponding P-values (from a one-sided Chi-square test) were computed
using N=10,748 genes as independent samples (see Online Methods for details).
Dots with P> 0.05 were omitted.
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Extended Data Fig. 6 | eQTL and disease GWAS colocalisation. a. ATF6

expression on the UMAP of fibroblast data. UMAP coordinates are identical to

for GTEx eQTLs (48tissues) as well as monocytes and iPSC derived macrophages

under various stimulation conditions.

Fig.2a.b. ATF motif (M6155_1.02; CIS-BP version 1.02). The nucleotide C coloured
by red indicates the location of the eQTL variant rs1998266T>C. c. Locus zoom

plots of hayfever, allergic rhinitis or eczema, rheumatoid arthritis and the ETV7
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X’ The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|X’ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|X| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  CEVIChE (App 2019): https://saezlab.shinyapps.io/ceviche/

Data analysis R 3.6.1 (https://www.r-project.org/)
Beagle 4.0 (https://faculty.washington.edu/browning/beagle/b4_0.html)
skewer 0.1.127 (https://github.com/relipmoc/skewer)
STAR 2.5.3a (https://github.com/alexdobin/STAR/releases)
featureCounts 2.0.0 (http://subread.sourceforge.net/)
demuxlet 0.1.0 (https://github.com/statgen/demuxlet)
CrossMap 0.5.2 (https://crossmap.readthedocs.io/en/latest/)
cellRegMap 0.0.3 (https://limix.github.io/CellRegMap/)
GASPACHO 0.0.1 (https://github.com/natsuhiko/GASPACHO)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All Smart-seq2 cram files of our fibroblast data are available from the European Nucleotide Archive (Accession ID: PRIEB20147). The genotype data of fibroblast
samples is under managed access and available through the HIPSCI portal (https://www.hipsci.org/data). The lines used in this study have the identifiers:
HPSI0114pf-eipl, HPSI0114pf-fikt, HPSIO114pf-joxm, HPSIO114pf-lexy, HPSIO114pf-rozh, HPSI0114pf-vabj, HPSI0114pf-vass, HPSI0114pf-zoxy, HPSI0115pf-gifk,
HPSI0115pf-melw, HPSI0115pf-zihe, HPSI0214pf-feec, HPSI0214pf-heja, HPSI0214pf-pelm, HPSI0215pf-deyz, HPSI0215pf-fawm, HPSI0215pf-hipn, HPSI0215pf-oilg,
HPSI0314pf-bubh, HPSI0314pf-cuhk, HPSI0314pf-qonc, HPSI0314pf-wigw, HPSI0314pf-xugn, HPSI0414pf-ceik, HPSI0414pf-gesg, HPSI0414pf-naju, HPSI0414pf-oaqd,
HPSI0514pf-fiaj, HPSIO514pf-kuco, HPSI0514pf-puie, HPSIO514pf-rutc, HPSI0514pf-sohd, HPSI0514pf-vuna, HPSI0614pf-ciwj, HPSI0614pf-miaj, HPSI0614pf-oicx,
HPSI0714pf-pipw, HPSI0913pf-diku, HPSI0913pf-eika, HPSI0913pf-lise, HPSI0914pf-euts, HPSI0914pf-kajh, HPSI0914pf-laey, HPSI1013pf-garx, HPSI1013pf-jogf,
HPSI1013pf-pamv, HPSI1013pf-sebz, HPSI1013pf-wopl, HPSI1013pf-wuye, HPSI1014pf-qayj, HPSI1014pf-sehl, HPSI1014pf-tixi, HPSI1014pf-toss, HPSI1014pf-tuju,
HPSI1014pf-vils, HPSI1113pf-bima, HPSI1113pf-dons, HPSI1113pf-eofe, HPSI1113pf-ieki, HPSI1113pf-oaaz, HPSI1113pf-qolg, HPSI1113pf-wahn, HPSI1113pf-wetu,
HPSI1114pf-ualf, HPSI1213pf-hehd, HPSI1213pf-nusw, HPSI1213pf-tolg and HPSI1213pf-xuja. The genotype data of COVID-19 PBMC samples is under managed
access and available from European Genome-Phenome Archive (Accession ID: XXXXXXX). The annotation of the CpG site was downloaded from the UCSC website
(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cpglslandExt.txt.gz). The position weight matrices (PWM) of transcription factor motifs were
obtained from CIS-BP (http://cisbp.ccbr.utoronto.ca/bulk.php). The PWM used to find TATA-box in the gene promotor have the following identifiers: M1641_1.02,
M2191_1.02, M4011_1.02, M4266_1.02, M6502_1.02, M1642_1.02, M4010_1.02, M4014_1.02 and M4708_1.02. OpenTargets GWAS summary statistics are
available from GWAS Catalog (https://www.ebi.ac.uk/gwas/), FINNGEN (https://www.finngen.fi/en/access_results) and UK Biobank (https://www.nealelab.is/uk-
biobank). COVID-19 GWAS summary statistics (release 5) are available from the COVID-19 Host Genetics Initiative (https://www.covid1Shg.org/results/r5/). The
Open Targets colocalisation data is obtained from the website (https://ftp.ebi.ac.uk/pub/databases/opentargets/genetics/210608/). The eQTL summary statistics of
GTEx 48 tissues as well as immune cells (iPSC derived macrophages and monocytes) under different stimulation conditions were obtained from the eQTL catalogue
(http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/). The 1000 Genomes Project VCF data (version: shapeit2_integrated_snvindels_v2a_27022019.GRCh38.phased) is
obtained from (http://hgdownload.soe.ucsc.edu/gbdb/hg38/1000Genomes/). The summary statistics of fibroblast eQTLs are available from ZENODO (https://
doi.org/10.5281/zen0do.7680146).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The total sample size is 68 fibroblast lines. The number was determined so that the probability to observe at least one heterozygous/minor
homozygous patient at a genetic variant with minor allele frequency 0.05 is greater than 0.9. With N=68, the probability was 0.9990659.

Data exclusions  We haven't excluded any sample.

Replication We discovered 1,275 expression QTLs in the fibroblast scRNA-seq data obtained from 68 unrelated donors of HIPSCI. Of which, we replicated
the OAS1 eQTL using two independent model systems: (1) the PBMC scRNA-seq data from 112 donors including 84 COVID-19 positive
individuals; and, (2) the scRNA-seq data of nasal brushing samples obtained from 33 adult COVID-19 positive patients.

Randomization  Randomization is not applicable, because this is a population based eQTL mapping study. Based on the principles of mendelian inheritance, it
is hypothesized that our study design is protected against typical forms of confounding factors on gene expression, because any confounding

factor is unable to alter genotypes of common germline genetic variants.

Blinding Blinding is not applicable, because this is a population based eQTL mapping study. In principle, samples were recruited blind with respect to
their genotypes and any bias in the association between a genetic variant and gene expression is unexpected.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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