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Mapping interindividual dynamics of innate 
immune response at single-cell resolution
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Common genetic variants across individuals modulate the cellular  
response to pathogens and are implicated in diverse immune pathologies,  
yet how they dynamically alter the response upon infection is not well  
understood. Here, we triggered antiviral responses in human fibroblasts  
from 68 healthy donors, and profiled tens of thousands of cells using  
single-cell RNA-sequencing. We developed GASPACHO (GAuSsian  
Processes for Association mapping leveraging Cell HeterOgeneity),  
a statistical approach designed to identify nonlinear dynamic genetic 
effects across transcriptional trajectories of cells. This approach identified 
1,275 expression quantitative trait loci (local false discovery rate 10%) 
that manifested during the responses, many of which were colocalized 
with susceptibility loci identified by genome-wide association studies 
of infectious and autoimmune diseases, including the OAS1 splicing 
quantitative trait locus in a COVID-19 susceptibility locus. In summary, our 
analytical approach provides a unique framework for delineation of the 
genetic variants that shape a wide spectrum of transcriptional responses at 
single-cell resolution.

The innate immune response is a cell-autonomous program that 
induces an antiviral state in infected and nearby cells and alerts the 
immune system of the invading pathogen1. Dysregulation of this 
response can affect a wide range of inflammatory and autoimmune 
diseases and determine the outcome of infection2–6. Common genetic 
variants have been shown to modulate transcriptional responses to 
various viral and bacterial stimuli, and to contribute to disease onset 
and progression7–11. Most past gene-expression-focused studies of this 
program are based on bulk RNA-sequencing (RNA-seq) technologies, 
which do not fully elucidate the continuous dynamics of transcrip-
tional changes during the innate immune response. Single-cell genomic 

technologies are powerful approaches to study cell heterogeneity 
and transcriptional variability across cells12. Furthermore, by utilizing 
single-cell RNA-seq (scRNA-seq) profiling of tissues composed of sev-
eral cell lineages, previous studies have successfully performed genetic 
association mapping of cell-type-specific expression13–19.

We here use full-length scRNA-seq of dermal fibroblasts from 
different human individuals, challenged with immune stimuli. Based 
on the pseudo-temporal reconstruction of these data, we map the 
transcriptional variation of the innate immune response at single-cell 
resolution. This provides the foundation for superimposing human 
genetic variation onto the transcriptional dynamics of this response.  
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was performed using a plate-based full-length transcript approach  
(Methods). After quality control, 22,188 high-quality cells were 
obtained across 128 plates, with each plate containing cells from three 
donors (Fig. 1a). The donor identity for each cell was inferred from 
scRNA-seq read data using known genotypes made available by HipSci 
(Extended Data Fig. 1a and Methods). Preliminary analysis showed that 
our data display high cell-to-cell variability in gene expression both 
within and across donors, as observed in previous studies by us and 
others25–27. In fact, our data were confounded by various technical and 
biological factors, including library preparation in different batches, 
and cell cycle effects (Extended Data Fig. 1b). The complex nature of 
these data, along with their confounders, motivated us to develop an 
approach that reveals the genetic and physiologically relevant varia-
tion, while computationally masking confounding factors.

Uncovering cell-state dynamics using GPs
Single-cell transcriptomics (as compared with bulk) enables us to 
uncover hidden states of complex biological processes, while also 
requiring regression of technical effects and biological variation that is 
not of interest (for example, proliferation). We developed GASPACHO, 
which utilizes a GPLVM to uncover the dynamic cell states of inter-
est, while adjusting periodic cell cycle variation and both known and 
unknown technical variations (such as, donor and Smart-Seq2 plate 
variations) simultaneously (Fig. 1b and Methods). The use of a GPLVM 
allows us to capture smooth and continuous nonlinear trends in gene 
expression along the latent variables, for which other methods such 
as the standard linear principal component analysis will not work well.

Although there are other models that utilize a GPLVM to study 
single-cell dynamics28,29, the unique aspect of our GPLVM approach is 
that it explicitly takes account of the donor variation as well as other 
known confounding effects (such as technical batches) as additional 
random effect terms (Fig. 1b and Methods). These confounders are 
known to inflate the type I error in downstream analyses, such as in dif-
ferential expression30 (DE), leading to false discovery of differentially 

To this end, we develop a statistical approach based on a Gaussian pro-
cess (GP) latent variable model (GPLVM)20,21 called GASPACHO (GAuSs-
ian Processes for Association mapping leveraging Cell HeterOgeneity). 
This allows us to identify expression quantitative trait loci (eQTLs) that 
manifest at different stages of the response to stimuli.

We find more than a thousand eQTLs, hundreds of which are 
colocalized with known risk loci of diverse autoimmune and infec-
tious diseases. We perform fine-mapping of the OAS1 locus, associated 
with COVID-19, to reveal the imbalanced expression of OAS1 and OAS3 
genes during the antiviral innate immune response. We further inte-
grate these data with eQTLs from a COVID-19 patient cohort dataset 
of peripheral blood mononuclear cell (PBMC) scRNA-seq22, as well as 
with scRNA-seq data of infected nasal epithelial cells from 33 patients 
with COVID-19 (ref. 23).

Overall, our study illustrates how coupling single-cell transcrip-
tomics with a cutting-edge statistical approach can identify dynamic 
effects of human trait-associated genetic variants in different contexts 
of activation of antiviral innate immunity and, in general, in diverse 
cellular dynamic processes.

Results
Cell stimulation to study antiviral responses in fibroblasts
To study the innate immune expression program that is triggered upon 
viral infection, we exposed primary dermal fibroblasts from 68 donors 
from the Human Induced Pluripotent Stem Cell Initiative (HipSci)24 to 
two stimulants: (1) Poly(I:C), a synthetic double-stranded RNA (dsRNA) 
that is rapidly recognized by viral sensors and elicits primary antiviral 
and inflammatory responses; and (2) interferon-β (IFN-β), a cytokine 
that upregulates a secondary wave of response in both infected and 
bystander cells, and shifts the cells into an antiviral mode, where hun-
dreds of interferon-stimulated genes (ISGs) are upregulated to contain 
the infection.

We collected cells exposed to each of the two stimuli after 2 
and 6 h of stimulation (Fig. 1a). Following this, scRNA-seq profiling 
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Fig. 1 | Schematics of experiment and statistical analysis. a, Experimental 
design using the in vitro fibroblast system. b, GASPACHO framework. Expression 
data and relevant metadata (known confounding factors) as well as donor (cell 
line) structure are used to construct a GPLVM to extract the target cell state, while 
dissecting cell cycle effect and other known and unknown technical variability 

including donor–donor variation. The result of the GPLVM is then utilized for 
the subsequent analyses of spatial DE analysis using a GP mixture model and 
the genetic association mapping using a GP regression model (Methods). Cond, 
experimental condition; Dim, dimension; ref/het/alt, reference homozygote/
heterozygote/alternative homozygote.
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expressed genes. As detailed below, the model output not only enabled 
us to look at the architecture of the antiviral response in the cell-state 
space, but also provided a rigorous statistical framework of (1) spatial 
DE analysis and (2) genetic association mapping using genotype data 
obtained from the donor of origin for each cell.

Specifically, the gene expression variation in the target cell-state 
space was inferred by a GP mixture model in which an additional GP 
component is introduced into the model to capture hidden spatial DE 
patterns31 of gene expression in the latent space (Fig. 1b and Methods). 
The genetic association mapping was also carried out by using a GP 
regression model in which the effect size of a quantitative trait locus 
(QTL) was modeled as a GP in the target cell-state space. Here, the 
additional GP was multiplied by the genotype dosage (the number of 
alternative alleles for each donor) to capture the gene–environment 
interaction32 (Fig. 1b and Methods). Importantly, the eQTL effect is 
obtained at single-cell resolution, and the model does not require 
aggregation of single-cell data into pseudo-bulk data, which is a com-
mon eQTL mapping strategy. Thus, we can study the effect of genetic 
variants without losing the continuum of transcriptional dynamics and 
its spectrum across individual cells. We performed a comprehensive 
analysis to assess our method in terms of both sensitivity and specificity 
with another single-cell-based eQTL mapping approach, CellRegMap33, 
using simulation-based datasets (section 3 of the Supplementary 
Notes). We have implemented the software in R, which is available from 
github (https://github.com/natsuhiko/GASPACHO).

Primary and secondary responses of innate immunity
We first applied the GPLVM to adjust for the cell cycle and unknown 
batch effects in our data (Extended Data Fig. 2a,b) and successfully 
extracted the innate immune state embedded in the data (Fig. 2a). We 
also confirmed that the extracted immune state was independent of 
cell cycle or the unknown batch variations (Extended Data Fig. 2c). We 
observed two major cell trajectories: one for response to IFN-β from 
the naïve state (x axis) and the other for response to Poly(I:C) (y axis).

We then applied the GP mixture model which revealed two inde-
pendent innate immune responses, the primary response by virus 
infection and the secondary response for bystander cells due to IFN-β 
secretion by the infected cells or direct IFN-β stimulation (Fig. 2b and 
Extended Data Fig. 3a). Those responses were highly overlapping on the 
Uniform Manifold Approximation and Projection (UMAP), suggesting 
those two processes are independently and simultaneously happen-
ing in each cell. In total, the GP mixture model discovered 903 and 
636 genes upregulated during the primary and secondary responses, 
respectively (hereafter referred to as primary response genes and sec-
ondary response genes), while 1,020 genes were expressed uniformly 
across all cells in different experimental conditions (referred to as 
stationary genes) (Fig. 2c and Extended Data Fig. 3b). Many cytokine 
and chemokine genes were upregulated along the primary response, 
while ISGs were upregulated along the secondary response (Fig. 2d). 
Interestingly, the primary response was also correlated with the pre-
dicted cell viability by CEVIChE (CEll VIability Calculator from gene 
Expression) (Fig. 2e and Methods). The gene ontology enrichment 
analysis for the primary and secondary genes clearly demonstrated 
that primary response genes are enriched for cell death and inflamma-
tory response, while secondary response genes are enriched for type I 
interferon response (Fig. 2f and Extended Data Fig. 3c).

Dynamic genetic effect on innate immune response
We then mapped eQTLs along innate immune responses using the GP 
regression model to assess genetic association in single-cell resolution 
(Methods). We discovered 1,275 eQTL genes (local false discovery rate 
(FDR) 10%) among 10,748 genes expressed, at least, in 10% of total cells. 
We mapped eQTLs in the HLA region where 91 genes were tested, and 
25 genes were eQTLs (local FDR 10%). Because the number of eQTLs 
was high for the modest sample size, we examined whether there was 
an inflation of test statistics for eQTL variants with lower minor allele 
frequencies (MAFs) and confirmed that there was no inflation in the 
Bayes factors nor in the number of discovered eQTLs in lower MAF bins 
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Fig. 2 | Innate immunity captured by GPLVM and GP mixture model.  
a, UMAP of latent variables capturing innate immune variation between cells. 
Cells are colored by the five experimental time points (gray, naïve state; pink, 
IFN-β 2 h; brown, IFN-β 6 h; blue, Poly(I:C) 2 h; navy, Poly(I:C) 6 h). b, Estimated 
pseudotime for primary and secondary responses using the GP mixture model. 
UMAP coordinates are identical to a. c, Barplot shows the numbers of response 
and stationary genes. d, Heatmaps show dynamic gene expression changes 

along primary or secondary response pseudotime. The pseudotime color scale 
corresponds to b. The expression color (navy to yellow) shows the magnitude of 
scaled expression for each gene (Z-score). e, UMAP shows a predicted Achilles 
cell viability using CEVIChE (Methods). UMAP coordinates are identical to a.  
f, Barplot shows the enrichment of gene ontology terms for primary and secondary 
genes. P values were computed using Fisher’s one-tailed test with Bonferroni 
multiple testing correction implemented in gprofiler2 on R. K, thousand.
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(Extended Data Fig. 4a,b). We note that the eQTL genes discovered are 
strongly enriched in highly expressed genes (Extended Data Fig. 4c), 
but this is not the case for differentially expressed genes (for example, 
stationary genes were depleted in highly expressed genes; Extended 
Data Fig. 4d).

We found that 15% and 16% of our eQTL genes are primary and 
secondary response genes, respectively (Fig. 3a and Extended Data 
Fig. 4e). These genes are strongly enriched within the discovered eQTLs  
(Fig. 3b and Extended Data Fig. 4f). Because eQTL genes tend to be 
highly expressed (Extended Data Fig. 4c), we adjusted enrichments for 
the average expression level (Methods) and confirmed that the result is 
broadly the same (Extended Data Fig. 4f). We also found that primary 
response genes are depleted in colocalization between our eQTLs 
and fibroblast eQTLs from the Genotype-Tissue Expression (GTEx) 
Project, while the stationary genes are enriched (odds ratio of 2.8)  
(Fig. 3a, Extended Data Fig. 4g,h and Methods), suggesting our eQTLs 
are highly context-specific. We note that the odds ratio observed sug-
gests a notable agreement between the two datasets (GTEx and our 
data), which is meaningful given the experimental and technical differ-
ences between the two studies which can strongly affect gene expres-
sion and subsequent eQTL discovery.

Next, we classified our eQTLs into static and dynamic eQTLs. We 
then further classified the dynamic eQTLs into distinct spatial patterns 
of their effect sizes utilizing a similar GP mixture model that segre-
gated response genes (Methods). We discovered 830 (65%) (posterior 
probability > 0.9) of our eQTLs were static eQTLs whose genetic effect 
is ubiquitous in any cellular state (Fig. 3b and Extended Data Fig. 4I,j). 
Furthermore, 184 (14%) and 141 (11%) of our eQTLs were primary and 

secondary response eQTLs, respectively, whose patterns resembled 
the spatial DE patterns of primary and secondary response genes 
(Extended Data Fig. 4i). We also found that the primary/secondary 
response eQTLs were enriched with primary/secondary response 
genes, respectively, while the static eQTLs were enriched with other 
types of differentially expressed genes (Fig. 3b and Extended Data  
Fig. 4k). The fact that the static eQTLs are significantly enriched 
with GTEx fibroblast eQTLs, while the primary response eQTLs are 
depleted, further supports the notion that our eQTLs are specific to the 
innate immune response and not detectable in a naïve cellular state. 
We note here that, as was shown in our simulation study (section 3 of 
the Supplementary Notes), the GP mixture model is robust against the 
lower detection limit of gene expression quantified by the sequenc-
ing technology. Therefore, the misclassification rate in the real data 
analysis is likely to be minimal.

As an example, the CXCL1 gene is a known primary innate immune 
response gene and a primary response eQTL (as expected from its 
known functions as an important chemokine in this response). It is 
mostly expressed in later time points of Poly(I:C)-stimulated cells 
(Fig. 3c), and its expression level is higher for the alternative allele T 
at rs1358594 compared with the reference allele G (Fig. 3d). This eQTL 
signal was discovered more than 100 kilobases (kb) downstream of 
the gene’s transcription start site (TSS) and only detected upon cell 
stimulation by Poly(I:C), but not in the naïve condition, as also shown in 
the GTEx naïve fibroblast eQTL data (Fig. 3e), though the gene is highly 
expressed in the GTEx data (median transcripts per million (TPM) = 111). 
We note, however, that this eQTL was discovered in eQTLGen data with 
tens of thousands of blood samples (Fig. 3e). This might suggest that 

N eQTL genes

eQTL GTEx fibro coloc

1

0

r2

lo
g 10

 B
F

GTEx fibroblast

a e

GG GT TT

Low

High

CXCL1 gene expression

rs1358594G>T

eQTL β (CXCL1)
c d

DE category

eQTLGen

eQTL category

N eQTL genes

Di�erentially
expressed genesb GTEx fibro coloc

0.5 2.00.5 2.0

1 2 5 0.510 1.0 2.00 400 800

Primary

Secondary

Static

0 100 200

Primary

Secondary

Stationary

–2

0

2

4

6

8

0

5

10

15

0
20
40
60
80

100
120

73,700 73,800 73,900 74,000 74,100

Chromosome 4 position (kb)

CXCL1–0.53

0.53

Fig. 3 | Characteristics of response eQTLs mapped using GP regression. 
a, Barplot showing the numbers of eQTLs (local FDR < 10%) that are primary 
and secondary response genes or stationary genes. Forest plots showing the 
enrichment of discovered eQTLs for the DE categories and GTEx fibroblast eQTL 
colocalizations. The error bars in the forest plots show 95% confidence intervals 
(standard errors) of odds ratios using N = 10,748 genes as independent samples 
(Methods). b, Barplot showing the numbers of static and dynamic eQTLs (primary 
and secondary response eQTLs). Forest plots showing the enrichment of response 
eQTLs for differentially expressed genes (primary, secondary response and static 
eQTLs for primary and secondary response genes, and for stationary genes, 

respectively) and the enrichment of response eQTLs of GTEx fibroblast eQTL 
colocalization. The error bars in the forest plots show 95% confidence intervals 
(standard errors) of odds ratios using N = 10,748 genes as independent samples 
(Methods). c, UMAPs showing CXCL1 expression levels stratified by different 
genotype groups at rs1358594G>T. UMAP coordinates are identical to Fig. 2a.  
d, UMAP shows the distribution of eQTL effect size (β) at rs1358594. The 
alternative allele (T) is assessed. UMAP coordinates are identical to Fig. 2a.  
e, Locus zoom plot of CXCL1 eQTL association Bayes factors around the CXCL1 
gene (top, in-house data; middle, GTEx fibroblast eQTL; bottom, eQTLGen blood 
eQTL). BF, Bayes factor; fibro coloc, colocalisation with GTEx fibroblast eQTLs.

http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/snp/?term=rs1358594
https://www.ncbi.nlm.nih.gov/snp/?term=rs1358594
https://www.ncbi.nlm.nih.gov/snp/rs1358594


Nature Genetics | Volume 55 | June 2023 | 1066–1075 1070

Technical Report https://doi.org/10.1038/s41588-023-01421-y

the eQTL signal is present in unstimulated conditions in immune cells 
(such as in blood).

To compare our eQTLs with other datasets, we repeated the colo-
calization analysis between our stimulated fibroblast eQTLs and all 
primary GTEx tissues34 as well as with immune cells (monocytes and 
induced pluiripotent stem cell (iPSC)-derived macrophages) stimu-
lated using different conditions based on previous studies7,9. We found 
that the naïve GTEx fibroblast showed the highest prior probability of 
colocalization (Extended Data Fig. 5 and Methods).

Fine-mapping eQTLs with epigenetic data
We have also performed fine-mapping using epigenetic data (histone 
modification chromatin immunoprecipitation followed by sequenc-
ing (ChIP–seq) of active promoters and enhancers) originating in 
dsRNA-stimulation of human dermal fibroblasts27 (Methods). We identi-
fied that more than 10% of the putative causal eQTL variants discovered 
by the hierarchical model (Methods) are located in the cis-regulatory 
regions characterized by the ChIP–seq data (Fig. 4a). Those variants 
are especially enriched for promoter peaks characterized by H3K4me3 
antibody in Poly(I:C)-stimulated cells (Fig. 4a). Importantly, our eQTLs 
were also strongly enriched around the TSS, and the number of eQTLs 
was reduced by 46% every 100 kb further away from the TSS (Fig. 4a).

We next tested whether promoter architecture affects the vari-
ability between individuals. It was previously shown by us and others27,35 
that genes containing TATA boxes in their promoters tend to vary 
more in transcription between species and conditions and between 
individual cells responding to an immune stimulus, whereas promoters 
containing CpG islands (CGIs) tend to vary less and be transcriptionally 
more homogenous. We observe that genes with TATA-containing pro-
moters are 1.4-times more highly enriched with eQTLs in comparison 
with genes with CGI-containing promoters (Fig. 4b).

Lastly, using the eQTL variants fine-mapped based on ChIP–seq 
annotations, we examined which transcription factor (TF) motifs were 
disrupted by the lead eQTL variants (Methods). We found interferon 

regulatory factors 1 and 4 (IRF1 and IRF4) as well as REL and ATF4 were 
significantly enriched (Fig. 4c). An example of putative TF binding 
disruption was discovered in RTP4 eQTL (Fig. 4d), where the alternative 
allele of a promoter-flanking eQTL variant (rs62292793T>A) may dis-
rupt an IRF1 motif that significantly reduces putative TF binding affin-
ity, which subsequently downregulates the RTP4 expression (Fig. 4e,f). 
Furthermore, the TATA motif (TBP) is also found to be disrupted by 
eQTL variants (Fig. 4c), further suggesting the importance of TATA reg-
ulation in modulating the response and its variability among individu-
als, as previously suggested in the mammalian immune response27,35 
and in other systems36.

Colocalization with autoimmune and infectious disease 
genome-wide association studies
One of the purposes of eQTL mapping is to uncover the target genes 
and related cell states at each genetic locus implicated by genome-wide 
association studies (GWASs) of common complex traits. Here, we tested 
colocalization of our eQTLs with risk loci from 701 GWASs (each with 
five or more genome-wide significant loci), of which 112 were broadly 
immune-related, including autoimmune and chronic inflammatory dis-
eases such as Crohn’s disease and infectious diseases such as COVID-19 
(Methods). We discovered 7,934 unique gene–trait combinations with 
the posterior probability of a single shared causal variant between an 
eQTL and a GWAS locus greater than 0.5. The combinations consisted 
of 643 different GWAS traits and 988 unique genes. We observed an 
excess of colocalized eQTLs for immune-related traits over nonimmune 
traits (Fig. 5a, P = 2.8 × 10−6, and Methods), likely reflecting the known 
involvement of innate immunity in each of the disease pathologies.

We discovered 48 primary and secondary response genes that were 
specifically colocalized with 51 autoimmune and infectious disease 
loci, some of which were colocalized with multiple traits (Fig. 5b). For 
example, we detected an eQTL for the ETV7 gene, which encodes a TF 
in the ETS family and plays a key role in hematopoiesis37. The eQTL was 
colocalized with rheumatoid arthritis (posterior probability = 0.98) 
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and hay fever, allergic rhinitis or eczema (posterior probability = 0.99) 
(Fig. 5c). The gene is an ISG and the expression is upregulated during 
secondary response (Fig. 5d). The lead eQTL variant (rs1998266T>C) 
is shared with the GWAS traits, whose alternative allele C upregulates 
gene expression in stimulated conditions and also increases the risks 
of those GWAS traits (Fig. 5d). The alternative allele C also modifies the 

binding motif of the TF ATF6 putatively bound at the promoter region 
of ETV7, thereby potentially increasing the expression level (Extended 
Data Fig. 6a–c).

Lastly, we compared our colocalization results with those pro-
vided by Open Targets for 2,331 GWAS traits and 16 different eQTL 
studies (Data availability). We discovered that 6,327 gene–trait pairs 
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were unique and only found in our colocalization results (posterior 
probability of colocalization > 0.5), whereas 1,607 gene–trait pairs are 
shared in both datasets (posterior probability of colocalization > 0.5), 
of which 615 also overlap with the GTEx fibroblast colocalization analy-
sis (Extended Data Fig. 6d).

Fine-mapping OAS1 eQTL associated with SARS-CoV-2 
infection
In conjunction with the fibroblast system, we used two additional in vivo 
systems (Fig. 6a) to further fine-map the 12q24.13 (OAS1) locus that 
was reported in a GWAS of SARS-CoV-2 positive-infected individuals 
against population controls38 (index SNP: rs10774671G>A). The locus 
is colocalized with the OAS1 eQTL in fibroblasts with a posterior prob-
ability of 1.0 (Figs. 5b and 6b). OAS1 is a secondary response gene and is 
highly expressed upon IFN-β (at 2 h and later) and Poly(I:C) stimulation 
(at 6 h) (Fig. 6c). The alternative allele A of rs10774671 downregulates 
the expression level (Fig. 6d).

We investigated our recently published PBMC scRNA-seq data22 
obtained from 112 donors, including 84 COVID-19-positive individu-
als, and profiled using the CITE-seq approach39, as an independent 
in vivo validation of OAS1 eQTL colocalization with GWAS locus for 
COVID-19 susceptibility (Methods). There are 18 major blood cell types 
annotated in this dataset (Extended Data Fig. 7a), of which myeloid 
cells and certain T cell subtypes show higher expression of the sec-
ondary response genes discovered in our fibroblast data (Extended 
Data Fig. 7b and Methods). As expected, OAS1 is highly expressed as a 
secondary response gene in PBMCs (Fig. 6e). In addition, we confirmed 
that the OAS1 gene is also a strong eQTL in PBMCs and colocalizes 
well with the COVID-19 GWAS locus with the posterior probability 
of 0.99 (Fig. 6b). The GWAS index variant rs10774671G>A is the lead 
eQTL variant in PBMCs whose alternative allele A is strongly nega-
tively correlated with OAS1 expression. This is especially clear in CD16+ 
monocytes, among other immune cell types (Fig. 6f and Extended  
Data Fig. 7a).
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The index SNP rs10774671 is known to be a splicing QTL40 that 
disrupts the splicing motif right next to the last exon of the OAS1 gene 
(Fig. 6g). In our fibroblast data, this variant also increased the intron 
expression between the last two exons and created three different 
isoforms (Fig. 6g), all of which are known to cause impaired OAS1 
protein expression40. These alternative isoforms are also observed in 
nasal epithelial cells from 33 brushing samples from a recent COVID-19  
cohort23. We confirmed that the alternative allele of the lead eQTL 
variant in stimulated fibroblasts is associated with lower expression of 
the OAS1 gene in the epithelial cells and the occurrence of alternative 
isoforms, as expected (Fig. 6h). This suggests that the in vitro stimula-
tion fibroblast system is an appropriate model to study physiologically 
relevant eQTLs in the context of infection, such as COVID-19.

In addition to the OAS1 eQTL, OAS3 eQTL in fibroblasts was also 
colocalized with the COVID-19 GWAS locus (posterior probabil-
ity = 0.99) (Fig. 5b and Extended Data Fig. 7c). Because OAS1 and OAS3 
are both ISGs, the expression patterns of OAS1 and OAS3 along the 
innate immune response trajectory are expected to be very similar, 
as indeed observed (Fig. 6c and Extended Data Fig. 7d). However, the 
direction of the eQTL effect was opposite for the two genes: OAS1 gene 
expression is downregulated by the alternative allele of the COVID-19 
GWAS index SNP rs10774671G>A, whereas the expression level of OAS3 
gene is upregulated by the alternative allele (Fig. 6d and Extended 
Data Fig. 7e,f).

Discussion
In this work we developed GASPACHO, a statistical framework that 
fulfils two tasks: firstly, to infer the trajectory of gene expression 
over a dynamic process, and secondly, to model nonlinear dynamic 
genetic effects in every individual cell. Using GASPACHO, we integrated 
scRNA-seq data from fibroblasts from 68 donors triggered by innate 
immune stimuli and obtained a low-dimensional gene expression 
space representing the response dynamics across stimulated cells. This 
approach provides us with a unique map of interindividual transcrip-
tional variation at single-cell resolution, which was often linked with 
noncoding regulatory regions (such as TF binding sites), previously 
profiled during fibroblast stimulation27. This approach discovered 
1,275 eQTL loci, of which 988 were colocalized with one or more GWAS 
loci of autoimmune and infectious diseases, including COVID-19 at 
the OAS1 locus. We also found 1,607 colocalizations shared with the 
Open Targets colocalizations database, of which 615 also overlap with 
the GTEx fibroblast colocalization analysis. We note here that some 
of the colocalizations in the Open Targets database are likely to be 
missed because Open Targets has only tested colocalizations against 
genome-wide significant loci in GWAS traits (P < 5 × 10–8), while we 
tested colocalizations for all GWAS loci (regardless of their P values) 
overlapping with 1-megabase (Mb) cis-windows of genes tested for 
eQTL mapping.

Previous studies used scRNA-seq profiling of tissues composed of 
several cell types from dozens to hundreds of donors, and performed 
genetic association mapping of cell-type-specific expression by using a 
pseudo-bulk approach13–19. GASPACHO, as well as cellRegMap33, allows 
mapping of dynamic genetic effects of gene expression in individual 
cells. These two approaches are particularly suitable when considering 
a continuous genetic effect along cellular states rather than several 
discrete cell populations or states. GASPACHO and CellRegMap both 
incorporate context-specific donor (donor by context interaction) 
effects to adjust for dynamic genetic effects, for a better statistical cali-
bration (because dynamic cellular states, such as immune responses, 
often vary between donors due to environmental and trans genetic 
effects). However, CellRegMap and GASPACHO differ in their model 
assumptions on genetic effects: CellRegMap assumes linearity on 
context-specific genetic (genotype by context interaction) effects, 
while GASPACHO assumes that those effects are nonlinear, suggesting 
GASPACHO is more flexible, yet computationally intensive (section 3 

of the Supplementary Notes). Therefore, further studies are required 
to implement faster GP regression in modern computational environ-
ments, such as GPU. Lastly, the GPLVM implemented in GASPACHO 
is currently applicable for rapid analysis of dozens of thousands of 
cells. An accelerated version of GPLVM will be needed in the future for 
scaling, and a cutting-edge Bayesian inference technique, such as the 
stochastic variational inference implemented in GPy, should be able 
to achieve this goal.

The innate immune response is a genetic program that is elicited by 
most cells invaded by pathogens; however, the response varies between 
infected cells in terms of magnitude, the specific set of regulated genes 
and their cellular fate. This variability is observed both between cells 
originating from different lineages and between individual cells from 
the same homogenous cellular population25–27. Furthermore, genetic 
variation has been shown to significantly modulate the innate immune 
response in many previous studies and its dynamics are thought to be 
nonlinear4,6–9,35. GASPACHO is thus particularly useful to study how 
genetic effects are associated with different stages and cellular tra-
jectories during this response, as demonstrated, for example, in our 
analysis of primary and secondary response genes. Furthermore, we 
also observe eQTLs that appear only during stimulation, as previously 
suggested using bulk RNA-seq4,6–9,35, but without the need to partition 
samples into discretized conditions.

Our in vitro immune stimulation of dermal fibroblasts can be used 
as a model system to study genetic effects in innate immune responses 
in primary cells. Using this analysis, we detected 6,327 colocalizations 
between eQTLs and various autoimmune and infectious disease GWAS 
loci. While fibroblasts are not the primary cellular target of SARS-CoV-2 
infection (which mostly targets epithelial cells), we detected a colocali-
zation between OAS1 eQTL and COVID-19 GWAS locus, which we then 
also found in PBMCs from patients with COVID-19. This colocalization 
was also previously found using bulk RNA-seq41. Our findings sug-
gest an association between a particular risk variant (rs10774671) and 
COVID-19 infection and severity, and that this risk allele may generate 
alternative isoforms of the OAS1 gene in nonclassical monocytes in 
peripheral blood. We further found that these alternative isoforms are 
expressed in nasal epithelial cells from a set of patients with COVID-19 
carrying the alternative allele. Since the alternative allele is also a risk 
allele in COVID-19 GWAS, this implies that these OAS1 RNA splicing 
isoforms may be associated with impaired OAS1 protein expression 
and viral clearance in host cells, as previously suggested in other viral 
diseases40,42. Interestingly, we also observe a colocalization in this locus 
between OAS3 eQTL and COVID-19 GWAS locus; however, in this case, 
the alternative allele of rs10774671 is linked to an increase in the OAS3 
gene expression level. Further studies are needed to mechanistically 
determine the impact of OAS3 expression on SARS-CoV-2 infection.

In summary, our study demonstrates how coupling single-cell tran-
scriptomics with a statistical approach can identify dynamic nonlinear 
effects of genetic variants across cellular contexts.
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Methods
Ethical compliance
This project was approved by the Wellcome Sanger Institute Animal 
Welfare and Ethical Review Body and complied with all relevant ethi-
cal regulations regarding animal research and human studies. Human 
cells were obtained from HipSci24, where they were collected from 
volunteers recruited from the National Institute for Health and Care 
Research (NIHR) Cambridge BioResource (written consent was given). 
Human skin profiling was performed in accordance with protocols 
approved by the Newcastle Research Ethics Committee (REC approval 
08/H0906/95+5). Patients with a confirmed diagnosis of COVID-19 were 
recruited from Addenbrooke’s and Royal Papworth hospitals under 
ethical approval obtained from the East of England Cambridge Central 
Research Ethics Committee (NIHR BioResource, REC no. 17/EE/0025). 
Informed consent was obtained for all participants.

Dermal fibroblast cell culture and stimulation
Primary dermal fibroblast cells from HipSci were used (http://www.
hipsci.org/). The cells were derived from healthy individuals spanning 
a range of ages (from 30 to 79 and 57.2 on average) and both sexes (40 
female and 28 male). Following a similar protocol used in our previ-
ous work27, cells were cultured in DMEM (high glucose, pyruvate, Life 
Technologies), with 10% FBS, GlutaMAX and 1% penicillin-streptomycin. 
In each experimental batch, we cultured in parallel cells from three 
different individuals. Cells were split the day before the experiment 
into separate wells and on the day of experiment were stimulated with 
either dsRNA (0.5 µg ml−1 high-molecular-weight rhodamine-labeled 
Poly(I:C) (Invivogen, tlrl-pic), transfected with 1 µl ml−1 lipofectamine 
2000 (Thermo Fisher, 11668027), for 2 or 6 h) or 1,000 U ml−1 human 
recombinant IFN-β (11410-2, PBL), for 2 or 6 h, or left untreated. In this 
manner, for each individual, we obtained five separate conditions.

After the relevant period of time, cells were detached by trypsi-
nization and resuspended in PBS. Samples from the three individuals 
with the same treatment were then mixed (for example, ‘unstimulated’ 
cells from the three donors would be pooled together). The primary 
aim of this mixing step was to reduce downstream experimental vari-
ability between the three donors, while simultaneously streamlining 
the collection stage. In this manner, we obtained plates for each of the 
five conditions, with each having a mixture of all three individuals.

Sorting and single-cell library preparation
Cells were sorted on a Becton Dickinson Influx into 96-well plates  
containing 2 µl per well of lysis buffer, as described in the Smart-Seq2 
protocol43, or in our previous work27. Importantly, each 96-well plate 
contained cells from the same condition of all three individuals used for 
each experimental batch. Single cells were sorted individually (using 
FSC-W versus FSC-H), and apoptotic cells were excluded using DAPI. 
Rhodamine-positive cells were selected in the Poly(I:C) treatments. Cells 
from each three-plex cell pool were sorted across four plates. Reverse tran-
scription and complementary DNA amplification were performed accord-
ing to the Smart-Seq2 protocol (Picelli et al., 2014), and library preparation 
was performed using an Illumina Nextera kit. Samples were sequenced 
using paired-end 75-bp reads on an Illumina HiSeq 2500 machine. For 
library preparation, cells were loaded into 384-well plates. We note that 
cells in one of the four stimulated conditions were assigned in a 384-well 
plate in conjunction with cells in naïve condition (rows C, H and M).

Smart-Seq2 data preprocessing and quality control
All sequence data were aligned to human genome assembly GRCh38 
using STAR (v.2.5.3a; https://github.com/alexdobin/STAR/releases) 
and ENSEMBL human gene assembly 90 as the reference transcrip-
tome. We performed adapter trimming of Tn5 transposon and PCR 
primer sequences using skewer (v.0.1.127; https://github.com/relip-
moc/skewer) before alignment. Following alignment, we used feature-
Counts (v.1.5.3; http://subread.sourceforge.net/) to count fragments 

for each annotated gene. In total, we observed 58,394 cells, of which 
22,188 cells passed the quality control criteria: the minimum number of 
sequenced fragments (>10,000 autosomal fragments), the minimum 
number of expressed genes (>500 autosomal genes), mitochondrial 
fragment percentage (<20%) and the library complexity (percentage 
of autosomal fragment counts for the top 100 highly expressed genes 
<30%). We also performed demuxlet44 (v.0.1.0; https://github.com/
statgen/demuxlet) to identify the genetic origin of each cell as well as 
to remove doublets using the genotype data from HipSci.

Genotype data
We obtained the SNP genotype data from HipSci24 (Data availability). 
We also genotyped 112 COVID-19 PBMC samples using the Affymetrix 
Axiom UK Biobank array (Data availability). We converted the genome 
coordinates from hg19 to GRCh38 using CrossMap (v.0.5.2; http://cross-
map.sourceforge.net/). We then performed the whole-genome impu-
tation using Beagle (v.5.1; https://faculty.washington.edu/browning/
beagle/beagle.html) with the reference panel from the 1000 Genomes 
Project (Data availability).

Cell viability prediction
The cell viability was predicted by the web-based tool CEVIChE (https://
saezlab.shinyapps.io/ceviche/). Because the tool is designed for bulk 
RNA-seq data, we aggregated gene expression levels for neighboring 
cells based on the UMAP in Fig. 2a. We constructed 30 × 30 equispaced 
grids and took geometric means of logCPM (log of counts per million) 
values within each grid.

GPLVM
The GASPACHO framework incorporated a GPLVM as a core model to 
estimate the latent variables and model parameters subsequently used 
in the spatial DE analysis and eQTL mapping. We assumed that the gene 
expression vector yj = ( yij; i = 1,… ,N )T  for the gene j  across N  cells is 
independently drawn from

yj ∼ N(αj + Zγj,σj2Ω)

αj ∼ N(0,σj2KθKBKX)

γj ∼ N(ζ,σj2∆)

where αj  is a baseline GP governed by three different kernel matrices, 
periodic kernel matrix Kθ  for the cell cycle state (θ) and two other 
squared exponential kernel matrices KB  and KX  for unknown batch 
effects (B) and the target cell state (X), respectively. Here, Z  is a design 
matrix for the known covariates, such as donor and sequencing plates 
(Fig. 1b), and γj  is a random effect to adjust the known confounding 
effects whose mean and variance were defined by ζ  and the diagonal 
matrix ∆ shared across all genes j = 1,… , J. The residual expression was 
determined by the gene-specific residual variance σj2  and the 
cell-specific residual variance Ω = diag(ωi; i = 1,… ,N). The variance of 
the GP and random effect for gene j was properly scaled by the 
gene-specific residual variance σj2.

The model parameters {∆,Ω,Σ, ζ } and the latent variables {θ,B,X } 
were inferred by maximizing the marginal likelihood

L(θ,B,X,∆,Ω,Σ, ζ) =
J

∏
j=1

∫p(yj|αj, γj)p(αj)p(γj)dαjdγj,

where Σ = diag(σj2; j = 1,… , J ). We used the L-BFGS algorithm with the 
analytic gradient of the likelihood function with respect to the param-
eters and the latent variables. In reality, the kernel matrices are not 
tractable for large N ; we computed the Titsias bound using the sparse 
GP21 to approximate the above likelihood (see section 1.3 of the Sup-
plementary Notes for more details).
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GP mixture model for gene classification
We employed a GP mixture model to perform the DE analysis in the 
target cell-state space defined by X  which was estimated by the GPLVM. 
Specifically, we introduced one extra GP βk for the kth differentially 
expressed gene group (k = 1,…,K) to which a gene j belongs:

yj ∼ N(αj + δjkβk + Zγj,σj2Ω)

αj ∼ N(0,σj2KθKB)

βk ∼ N(0,σj2KX)

γj ∼ N(ζ,σj2∆)

δjk ∼ N(0, 1)

Here, the effect size of the GP was properly scaled by a coefficient 
δjk  to allow the GP to be both positively and negatively correlated with 
the gene expression. The model parameters {∆,Ω,Σ, ζ } and the latent 
variables {θ,B,X } were replaced by the estimators of the GPLVM. Then, 
we maximized the likelihood of a finite mixture of GPs:

L(π1,… ,πK,β1,… ,βK)

=
J
∏
j=1

K
∑
k=1

∫πkp( yj|αj,βk, γj,δjk)p(αj)p(βj)p(γj)p(δjk)dαjdγjdδjk

with respect to πk  and βk  for k = 1,… ,K . Note that the number of total 
mixture components K  is fixed in the current implementation and K = 3 
was used in the fibroblast data. We used the sparse approximation to 
make the likelihood tractable (see section 1.4 of the Supplementary 
Notes for more details). Note that this model can be readily extended 
to classify dynamic eQTL effect sizes into finite spatial patterns (see 
section 1.4.1 of the Supplementary Notes).

For the pseudotime analysis, we computed the posterior mean 
E[βk|y1,…,yJ] for the kth component, which provided the underlying 
cellular states regarding the primary and secondary innate immune 
responses.

GP regression for association mapping
We employed a GP regression model to map eQTLs in the target 
cell-state space defined by X which was estimated by the GPLVM. Spe-
cifically, we introduced one extra GP βjl for the gene j multiplied by the 
lth genetic variant gl = (gl1,…,glN)T whose ith element gli is alternative 
allele dosages for the individual i as a gene–environment interaction:

yj ∼ N(αj + βjl ⊙ gl + Zγj,σjl2Ω)

αj ∼ N(0,σjl2KθKBKX)

βjl ∼ N(0,δg
2σjl2(11T + KX))

γj ∼ N(ζ,σjl2∆)

Here the eQTL effect size was properly scaled by a coefficient δg  
to allow for controlling of the genetic contribution on the expression 
level. The model parameters {∆,Ω,Σ, ζ } and the latent variables {θ,B,X } 
were replaced by the estimated values obtained by the GPLVM. The 
Bayes factor of genetic association can be obtained by:

BF =
∫p( yj|αj,βjl, γj)p(αj)p(βjl)p(γj)dαjdβjldγj
∫p( yj|αj,βjl = 0, γj)p(αj)p(γj)dαjdγj

where we set δg = 0.1 (see section 1.5 of the Supplementary Notes for 
more details).

As is implemented in CellRegMap, our model can also be 
extended to take the context-specific donor (context-by-donor 
interaction) effect into account. Here, the gene expression model 
can be written as:

yj ∼ N(αj + βjl ⊙ gl + Zγj +
Nd

∑
i=1

fij ⊙ zi,σj2Ω)

fij ∼ N(0,δdxc
2σj2KX); i = 1,… ,Nd,

where fij  denotes an additional GP for the individual i, zi denotes the 
indicator vector to specify which cells belong to the individual i and Nd 
denotes the number of donors in the data. The additional variance 
parameter δdxc for the context-by-donor interaction effect is estimated 
under the null model using all genes (see section 1.5.1 of the Supple-
mentary Notes for more details). All the real data analyses using the 
fibroblast data in this manuscript were based on the Bayes factors with 
this context-specific donor effect.

The eQTL effect size was estimated using the posterior distribution 
p(βjl| yj) ∝ p( yj|βjl)p(βjl) and the posterior mean E[βjl| yj] was computed 
for each variant l and used for the visualization on a UMAP (see section 
1.5.2 of the Supplementary Notes for more details).

Hierarchical model for eQTL mapping and enrichment analysis
We tested genetic variants whose MAF is greater than 0.05 in a 1-Mb 
cis-regulatory window centered at each gene TSS. To control the FDR 
in a Bayesian framework, we used the hierarchical model45 to obtain 
the posterior probability that a gene is an eQTL as well as the posterior 
probability that a variant is an eQTL variant within the cis window. 
The model allows incorporating various genomic annotations in the 
gene-level and variant-level as demonstrated previously45. We used the 
ChIP–seq peak annotations obtained by Hagai et al.27 in conjunction 
with TSS proximity to estimate the contribution of epigenetic informa-
tion to the eQTL variant discovery (see section 2.1 of the Supplementary 
Notes for more details). Note that we only consider genes expressed 
in at least 10% of the cells, resulting in a tested dataset of 10,748 genes. 
We did not introduce the gene-level prior probability to weight highly 
expressed genes for the eQTL discovery.

eQTL enrichment in differentially expressed genes and other 
annotations
The enrichment analysis was carried out based on the posterior prob-
ability Zj that the gene j is an eQTL obtained from the hierarchical model. 
We then computed a 2 × 2 table using a corresponding binary annota-
tion Xj  (if the gene j belongs to some annotation, for example, a 
TATA-box, then Xj = 1, and otherwise Xj = 0) or alternatively the poste-
rior probability Xj ∈ [0, 1] that the gene j is a differentially expressed 
gene (one of multiple differentially expressed gene categories defined 
above), such that

Tkl =
J
∑
j=1

(1 − Xj)
(1−k)(1 − Zj)

(1−l)Xj
kZj

l

for k, l = 0, 1 . From the 2-by-2 table T , we computed the log  
o d d s  ra t i o  r = log(T00T11/(T01T10))  a n d  i t s  s t a n d a rd  e r ro r 
Var(r) = (1/T00 + 1/T01 + 1/T10 + 1/T11)  to perform hypothesis testing.  
The confidence interval of the log odds ratio was given by r ± 1.96√Var(r). 
We also computed the P value from the Χ2 statistic χ2 = r2/Var(r).

If the occurrence of eQTLs and an annotation X  were confounded 
by a factor C  (such as expression level for a gene), we split genes into 
100 quantile bins according to the confounding factor C  to compute 
the log odds ratio and its standard error for each bin as demonstrated 
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above, and then we combined them using the inverse variance method 
to derive the meta statistic for an adjusted enrichment statistic.

eQTL sharing with GTEx tissues
We used the pairwise hierarchical model45,46 to jointly map eQTLs in two 
different cell types (a similar approach to the pairwise fGWAS model47). 
We employed the association Bayes factor at each variant for each gene 
to compute the regional Bayes factors in a cis region of 1 Mb centered 
at the TSS under the following five different hypotheses:

H0: a gene is not an eQTL in cell/tissue types 1 and 2.
H1: �a gene is an eQTL in cell/tissue type 1, but not in cell/tissue 

type 2.
H2: �a gene is an eQTL in cell/tissue type 2, but not in cell/tissue 

type 1.
H3: �a gene is an eQTL in cell/tissue types 1 and 2 with two independ-

ent putative causal variants.
H4: �a gene is an eQTL in cell/tissue types 1 and 2 with the shared 

putative causal variant.
Those regional Bayes factors were used in a hierarchical model to 

estimate prior probabilities that eQTLs are shared between two cell 
types (see section 2.2 of the Supplementary Notes for more details).

The hypothesis testing of eQTL enrichment in different DE cat-
egories, which are also colocalized with other eQTLs (such as GTEx 
fibroblasts), was performed by computing the pseudo counts:

Tkl =
J
∑
j=1

(1 − Xj)
(1−k)(Zj

(1) + Zj
(3))

(1−l)
Xj

k(Zj
(4))

l

for k, l = 0, 1, where Xj denotes the posterior probability that the gene 
j is differentially expressed, Zj

(1) denotes the probability that the gene 
j is an eQTL in our data and not in a GTEx tissue, Zj

(3) denotes the prob-
ability that the gene j is an eQTL in our data and a GTEx tissue and not 
sharing the putative causal variant, and Zj

(4) denotes the probability 
that the gene j is an eQTL both in our data and a GTEx tissue and colocal-
ized. The odds ratio and its standard error were computed as described 
in the section ‘eQTL enrichment in differentially expressed genes and 
other annotations’.

Annotating TATA and CpG genes
To look for TATA-box motifs in gene promoters, we used TATA-motifs 
from CIS-BP (Data availability). We used the CpG annotation (Data 
availability) from the UCSC Genome browser to search for genes whose 
promoters overlap with a CGI. In both cases, we used the region 100 bp 
upstream from the TSS as the promoter region and referred to these 
genes as TATA genes and CpG genes, respectively.

eQTL variant enrichment at TF motifs
The hierarchical model provided the posterior probability that each 
variant l in the cis-regulatory region for the gene j is the eQTL Zjl, so that 
∑Lj

l=1Zjl = 1 where Lj is the number of variants in the cis window. We first 
selected the lead eQTL variant according to the posterior probability 
for each gene j. We then used the position weight matrices of TF motifs 
in CIS-BP (Data availability) to call motifs overlapping with lead eQTL 
variants as described elsewhere45.

To perform the hypothesis testing that a TF motif is significantly 

overlapping with eQTL variants, we set Zj = max
l=1,…,Lj

{Zjl} and Xj to be the 

binary variable whose value is Xj = 1 if the lead eQTL variant l is overlap-
ping with a TF motif; otherwise, Xj = 0. We then computed the 2 × 2 table 
to perform the enrichment analysis as described in the section ‘eQTL 
enrichment in differentially expressed genes and other annotations’.

GWAS summary statistics
GWAS summary statistics were obtained from Open Targets which 
collected and harmonized summary statistics from the GWAS Catalog, 

FinnGen and UK Biobank (in total, 4,744 traits) (Data availability).  
We also downloaded summary statistics of four different 
COVID-19-related traits for all samples excluding 23andMe (‘Very severe 
respiratory confirmed covid vs. population’, ‘Hospitalized covid vs. not 
hospitalized covid’, ‘Hospitalized covid vs. population’ and ‘Covid vs. 
population’ in release 5) from the COVID-19 Host Genetics Initiative 
(Data availability). We selected 701 GWAS traits out of 4,748 traits with 
the criterion of five or more genome-wide significant loci, of which 112 
were broadly immune-related, including autoimmune and chronic 
inflammatory diseases as well as infectious diseases.

Colocalization with GWAS traits
We used the same pairwise hierarchical model as in the section ‘eQTL 
sharing with GTEx tissues’ to perform the GWAS colocalization analysis, 
where the prior probabilities of the pairwise hierarchical model were 
fixed as {Π1, Π2, Ψ12} = {0.2, 0.05, 0.01}, so that we can compare different 
studies with different statistical power to detect GWAS associations 
due to varying sample sizes. Here, Π1 denotes the prior probability that 
a gene is an eQTL, Π2 denotes that a genomic region for the correspond-
ing gene (a 1-Mb window centered at TSS) is a significant GWAS locus 
and Ψ12 is a prior probability that the eQTL and the GWAS locus are 
colocalized. To fit the model, we converted the effect sizes and standard 
errors of each GWAS trait into Bayes factors using Wakefield’s approxi-
mation48. See section 2.3 of the Supplementary Notes for more details.

PBMC data analysis and eQTL mapping
We used human PBMC scRNA-seq data22 from 112 donors, including 84 
COVID-19-positive individuals, profiled with the CITE-seq approach 
from 10x Genomics. We reduced the full GASPACHO approach to 
accommodate the PBMC single-cell data of over 700,000 cells in a 
reasonable time scale. The kernel functions used in the model were 
restricted to the linear kernel without the cyclic kernel for the cell cycle 
effect. The latent factors were estimated with the covariates of the num-
ber of genes expressed, the number of mapped reads, the sequencing 
center, sex, age, COVID-19 status, COVID-19 severity, patient ID and the 
first three genotype principal components. The latent factors were 
then used to define the two GPs

αj ∼ N(0,σj2XXT)

βjl ∼ N(0,δg
2σj2(11T + XXT))

for the intercept and the eQTL effect size of variant l for gene j.

OAS1 locus analysis using COVID-19 nasal brushing samples
To fine-map the OAS1 locus in cells in vivo infected with COVID-19, 
we used human single-cell data of 33 nasal brushing samples from 
patients with COVID-19 from a recent work23, profiled using CITE-seq. 
We used the aligned bam files to quantify allele-specific expression 
at rs10774671 using RASQUAL allele-specific expression caller49. The 
genotypes were assigned by fitting a binomial distribution on the 
allele-specific expression with probability parameters p = {0.01, 0.5, 
0.99} for reference homozygote, heterozygote and alternative homozy-
gote, respectively. We inferred that there are three reference homozy-
gotes, 18 heterozygotes and 12 alternative homozygotes at rs10774671 
in this dataset.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All Smart-Seq2 cram files of our fibroblast data are available from the 
European Nucleotide Archive (Accession ID: PRJEB20147). The genotype 
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data of fibroblast samples are under managed access and available 
through the HipSci portal (https://www.hipsci.org/data). The lines 
used in this study have the identifiers: HPSI0114pf-eipl, HPSI0114pf-fikt, 
HPSI0114pf-joxm, HPSI0114pf-lexy, HPSI0114pf-rozh, HPSI0114pf-vabj, 
HPSI0114pf-vass, HPSI0114pf-zoxy, HPSI0115pf-gifk, HPSI0115pf-melw, 
HPSI0115pf-zihe, HPSI0214pf-feec, HPSI0214pf-heja, HPSI0214pf-pelm, 
HPSI0215pf-deyz, HPSI0215pf-fawm, HPSI0215pf-hipn, HPSI0 
215pf-oilg, HPSI0314pf-bubh, HPSI0314pf-cuhk, HPSI0314pf-qonc, 
HPSI0314pf-wigw, HPSI0314pf-xugn, HPSI0414pf-ceik, HPSI 
0414pf-gesg, HPSI0414pf-naju, HPSI0414pf-oaqd, HPSI0514pf-fiaj, 
HPSI0514pf-kuco, HPSI0514pf-puie, HPSI0514pf-rutc, HPSI0 
514pf-sohd, HPSI0514pf-vuna, HPSI0614pf-ciwj, HPSI0614pf-miaj, 
HPSI0614pf-oicx, HPSI0714pf-pipw, HPSI0913pf-diku, HPSI0 
913pf-eika, HPSI0913pf-lise, HPSI0914pf-euts, HPSI0914pf-kajh, 
HPSI0914pf-laey, HPSI1013pf-garx, HPSI1013pf-jogf, HPSI1013pf-pamv, 
HPSI1013pf-sebz, HPSI1013pf-wopl, HPSI1013pf-wuye, HPSI1014pf-qayj, 
HPSI1014pf-sehl, HPSI1014pf-tixi, HPSI1014pf-toss, HPSI1014pf-tuju, 
HPSI1014pf-vils, HPSI1113pf-bima, HPSI1113pf-dons, HPSI1113pf-eofe, 
HPSI1113pf-ieki, HPSI1113pf-oaaz, HPSI1113pf-qolg, HPSI1113pf-wahn, 
HPSI1113pf-wetu, HPSI1114pf-ualf, HPSI1213pf-hehd, HPSI1213pf-nusw, 
HPSI1213pf-tolg and HPSI1213pf-xuja. The genotype data of COVID-
19 PBMC samples around OAS1 gene are available at Zenodo50. The 
genome-wide genotype data are available upon request under the 
managed access of the NIHR BioResource’s Data Access Committee. 
The annotation of the CpG site was downloaded from the UCSC website 
(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cpgIs-
landExt.txt.gz). The position weight matrices (PWMs) of transcription 
factor motifs were obtained from CIS-BP (http://cisbp.ccbr.utoronto.
ca/bulk.php). The PWMs used to find TATA-box in the gene promotor 
have the following identifiers: M1641_1.02, M2191_1.02, M4011_1.02, 
M4266_1.02, M6502_1.02, M1642_1.02, M4010_1.02, M4014_1.02 and 
M4708_1.02. Open Targets GWAS summary statistics are available from 
the GWAS Catalog (https://www.ebi.ac.uk/gwas/), FINNGEN (https://
www.finngen.fi/en/access_results) and UK Biobank (https://www.
nealelab.is/uk-biobank). COVID-19 GWAS summary statistics (release 
5) are available from the COVID-19 Host Genetics Initiative (https://
www.covid19hg.org/results/r5/). The Open Targets colocalization data 
are obtained from the website (https://ftp.ebi.ac.uk/pub/databases/
opentargets/genetics/210608/). The eQTL summary statistics of GTEx 
48 tissues as well as immune cells (iPSC-derived macrophages and 
monocytes) under different stimulation conditions were obtained from 
the eQTL catalog (http://ftp.ebi.ac.uk/pub/databases/spot/eQTL/). 
The 1000 Genomes Project VCF data (version: shapeit2_integrated_
snvindels_v2a_27022019.GRCh38.phased) were obtained from: http://
hgdownload.soe.ucsc.edu/gbdb/hg38/1000Genomes/. The summary 
statistics of fibroblast eQTLs are available from Zenodo (https://doi.
org/10.5281/zenodo.7680146).

Code availability
GASPACHO (v.1.0.0), example data and script code to reproduce the 
results are available at Zenodo51.
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Extended Data Fig. 1 | Data and quality controls. a. Barplot shows the number of cells for each donor (cell line). b. UMAPs calculated from the first 10 principal 
components from the data. Points are coloured by unknown batch effect (well correlated with experimental date), cell cycle phase estimated from known marker 
genes (Online Methods) and experimental conditions.
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Extended Data Fig. 2 | Observed cellular states in the fibroblast single cell 
data. a. Histogram shows the distribution of estimated cell cycle phase by GPLVM 
(Online Methods). b. Scatterplots show scaled expression of known cell cycle 
genes (UBE2C and CDC6) and a gene highly expressed in G0/G1 phase (FN1). The 

red curves show the posterior mean estimates of expression levels by GPLVM 
(Online Methods). c. UMAPs of the target cell states coloured by unknown batch 
or cell cycle phase. UMAP coordinates are identical to Fig. 2a.
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Extended Data Fig. 3 | Spatial differential expression analysis to classify 
genes into different innate immune responses. d. UMAPs of the seven different 
mixture components estimated from the GP mixture model (Online Methods). 
The values are quantile-normalised as in [0,1], and also treated as pseudotime 

for the first two components (primary and secondary). UMAP coordinates are 
identical to Fig. 2a. e. The number of genes categorised in each of the seven 
components. f. Top GO terms enriched with the genes detected in each of the 
seven DE categories.
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Extended Data Fig. 4 | Characteristics of mapped response eQTLs. a. 
Distributions of Bayes factors from our fibroblast data for N = 1 million random 
gene-variant pairs. Here we used all variants with MAF > 0% for the Bayes factor 
calculation (not only variants with MAF > 5%). Here The bottom and top of each 
box (Q1 and Q3) are the 25th and 75th percentile (the lower and upper quartiles, 
respectively), and the band near the middle of the box is the 50th percentile 
(the median). The ends of the whiskers are defined as follows: upper whisker = 
min(max value, Q3 + 1.5*IQR) and lower whisker = max(min value, Q1–1.5*IQR), 
where IQR = Q3-Q1 is the box length. b. Mosaic plot shows the number of eQTLs 
(local FDR = 10%) in different MAF bins (column). We included the number 
of non-eQTL (the top row of the plot coloured by gray) in comparison to the 
number of eQTLs (bottom row coloured by green). c-d. The trend of posterior 
probabilities of eQTLs or stationary genes (one of the 7 differential expression 
categories) against gene expression levels. The line was estimated using logistic 
regression where the response variable is the posterior probability greater than 
0.9 against the expression quantile based on the average expression across 
all cells for each gene. e. The number of eQTL genes stratified by the spatial 
DE genes demonstrated in Extended Data Fig. 2d. f. Forest plot showing the 
enrichment of the 1,275 eQTL genes in each of the 7 DE categories. The black dots 
show non-adjusted eQTL enrichment, and the red dots show the enrichment 

following adjustment for gene expression levels (Online Methods). The error 
bars in the forest plot show 95% confidence intervals (standard errors) of odds 
ratios using N = 10,748 genes as independent samples (see Online Methods for 
details). g. The number of eQTL genes colocalised with GTEx fibroblast eQTLs 
in the 7 different DE gene categories. h. Forest plot shows the enrichment of 
the eQTL colocalised with GTEx fibroblast eQTLs in the 7 different DE gene 
categories. The error bars in the forest plot show 95% confidence intervals 
(standard errors) of odds ratios using N = 10,748 genes as independent samples 
(see Online Methods for details). i. UMAPs showing spatial distributions of eQTL 
effect sizes estimated from the GP mixture model with 4 different spatial eQTL 
categories (static, primary, secondary and unknown; Online Methods). UMAP 
coordinates are identical to Fig. 2a. j. The numbers of static and dynamic eQTLs 
estimated from the GP mixture model. k. Heatmap showing the enrichment of 
spatial eQTL categories for the 7 DE categories and the GTEx fibroblast eQTLs. 
Colour scale shows the odds ratio of enrichment and the size of dots denotes the 
magnitude of Bonferroni-corrected P-values of the enrichment. The odds ratios 
and corresponding P-values (from a one-sided Chi-square test) were computed 
using N = 10,748 genes as independent samples (see Online Methods for details). 
Dots with P > 0.05 were omitted.
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Extended Data Fig. 5 | eQTL sharing with GTEx and other immune cell eQTLs. Prior probability inferred by the pairwise hierarchical model (Online Methods) fitted 
between our eQTLs and those for the 48 GTEx tissues as well as immune cells (monocytes and iPSC-derived macrophages) under different stimulation conditions.
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Extended Data Fig. 6 | eQTL and disease GWAS colocalisation. a. ATF6 
expression on the UMAP of fibroblast data. UMAP coordinates are identical to 
Fig. 2a. b. ATF motif (M6155_1.02; CIS-BP version 1.02). The nucleotide C coloured 
by red indicates the location of the eQTL variant rs1998266T>C. c. Locus zoom 
plots of hayfever, allergic rhinitis or eczema, rheumatoid arthritis and the ETV7 

eQTL. d. The numbers of colocalised loci between our eQTLs and OpenTarges 
GWAS traits that were overlapping with the OpenTarges colocalisation resource 
for GTEx eQTLs (48 tissues) as well as monocytes and iPSC derived macrophages 
under various stimulation conditions.
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Extended Data Fig. 7 | Fine-mapping OAS locus. a. UMAP shows the 18 
different cell types annotated previously in the PBMC data22. b. UMAP shows the 
secondary response pseudotime calculated from the secondary response genes 
discovered in the fibroblast data. c. Locus zoom plot shows the COVID-19 GWAS, 
OAS1 and OAS3 eQTL (both in fibroblasts) associations. UMAP coordinates are 

identical to Extended Data Fig. 7a. d. UMAP shows the OAS3 gene expression. 
UMAP coordinates are identical to Fig. 2a. e. UMAP shows the eQTL effect size 
at rs10774671. UMAP coordinates are identical to Fig. 2a. f. Effect directions of 
OAS1/3 eQTLs and the risk allele of COVID-19 GWAS at the lead variant rs10774671.
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