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SUMMARY
Here, using single-cell RNA sequencing, we examine the stromal compartment inmurinemelanoma and drain-
ing lymph nodes (LNs) at points across tumor development, providing data at http://www.teichlab.org/data/.
Naive lymphocytes from LNs undergo activation and clonal expansion within the tumor, before PD1 and Lag3
expression, while tumor-associated myeloid cells promote the formation of a suppressive niche. We identify
three temporally distinct stromal populations displaying unique functional signatures, conserved across
mouse and human tumors. Whereas ‘‘immune’’ stromal cells are observed in early tumors, ‘‘contractile’’ cells
become more prevalent at later time points. Complement component C3 is specifically expressed in the im-
mune population. Its cleavage product C3a supports the recruitment of C3aR+macrophages, and perturbation
of C3a and C3aR disrupts immune infiltration, slowing tumor growth. Our results highlight the power of scRNA-
seq to identify complex interplays and increase stromal diversity as a tumor develops, revealing that stromal
cells acquire the capacity to modulate immune landscapes from early disease.
INTRODUCTION

To aid their growth and development, malignant cells cultivate a

supporting niche of ‘‘normal’’ cells, known as the tumor microen-

vironment (TME). This niche comprises non-immune cells such

as fibroblasts, blood and lymphatic endothelial cells, and

numerous immune populations (Turley et al., 2015). The balance

of anti-tumor versus pro-tumor leukocytes can dictate tumor fate

(Galon et al., 2006; Sato et al., 2005), and suppressive popula-

tions can persist to support immune escape and prevent tumor

clearance. While immunotherapies such as anti-CTLA4, anti-

PD1, and anti-PD-L1 show efficacy in a large number of mela-

noma patients, a significant proportion do not respond to this

treatment (Brahmer et al., 2012; Hamid et al., 2013; Hodi et al.,

2010; Topalian et al., 2012). Thus, there remains an unmet

need to uncover therapeutic targets. The numerousmechanisms

through which stromal fibroblasts and immune cells promote tu-

mor growth represent a wealth of opportunities for therapeutic

intervention. However, the evolving TME is extremely dynamic,
This is an open access article und
continually adapting to both soluble and mechanical cues,

inducing significant heterogeneity within the stromal compart-

ment (Junttila and de Sauvage, 2013).

Cancer-associated fibroblasts (CAFs) are the most abundant

stromal component, secreting growth factors, promoting angio-

genesis, facilitating metastasis, and regulating immune infiltra-

tion (Calon et al., 2012; Dumont et al., 2013; Gaggioli et al.,

2007; Guo et al., 2008; Harper and Sainson, 2014; Jia et al.,

2013; Orimo et al., 2005). Although they express typical fibro-

blast markers such as fibroblast activation protein (FAP),

platelet-derived growth factor receptors a (PDGFRa) and b

(PDGFRb), podoplanin (PDPN), Thy-1, and a-smooth muscle

actin (aSMA), no single marker universally identifies all CAFs

within the tumor stroma (Augsten, 2014; Cortez et al., 2014; Ros-

wall and Pietras, 2012). Such barriers to the identification of

CAFs in the TME may underpin conflicting evidence for both

pro- and anti-tumor activities, which may reflect the existence

of subpopulations of cells possessing different functional prop-

erties (Feig et al., 2013; Özdemir et al., 2015). Recently, single-
Cell Reports 31, 107628, May 19, 2020 ª 2020 The Authors. 1
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cell technologies have yielded insights into the diversity of the

TME, and are beginning to reveal the extent of heterogeneity

within the stromal compartment (Bartoschek et al., 2018; Costa

et al., 2018; Elyada et al., 2019; Lambrechts et al., 2018; Öhlund

et al., 2017; Puram et al., 2017). While commonalities between

stromal populations were identified across the cancer types

examined, differences in functional signatures and marker

profiles were observed between tumor types and anatomical

location, indicating the existence of site-specific programs.

Whether similarly diverse stromal subsets are present within

melanoma and how the composition and functions adapt as a

tumor develops remain to be explored. Therefore, we used

single-cell RNA sequencing (scRNA-seq) to interrogate the

developing TME in real time, revealing previously unrecognized

traits and an increasing heterogeneity.

Here, we identified the presence of a diverse immune land-

scape, in which effector T cells displayed signs of dysfunction

predominantly in late stages, while myeloid cells concomitantly

increased the expression of suppressive molecules. This work

also highlighted significant heterogeneity within the stromal

compartment of the primary tumor. Three distinct mesenchymal

populations were identified—immune, desmoplastic, and con-

tractile—each displaying unique functional and temporal char-

acteristics key to the tumor. At early time points, the immune

and desmoplastic populations dominated, yet at later stages,

the third contractile subset became more prevalent. Using a

unique database of known ligand-receptor interactions, we

investigated communication between different stromal and im-

mune populations to reveal the complex interplay between the

immune stromal subset, macrophages, and T cells, which ulti-

mately contributes to T cell dysfunction.

RESULTS

Identification of Immune and Stromal Populationswithin
the Developing TME
To reconstruct the immune composition of a developing TME,

we injected B16-F10 melanoma cells into mice. At different

time points (days 5, 8, and 11) during tumor development, spe-

cific immune populations were enriched based on surface

marker expression and index sorted fromboth tumors and lymph

nodes (LNs). In this model, early day 5 tumors presented as

barely palpable masses compared with late tumors at day 11

(Figure S1A). To avoid the biases associated with the isolation

of stromal cells, we also injected B16-F10 melanoma cells into

CAG-EGFP mice, which exhibit widespread EGFP expression.

This enabled a negative selection approach, which did not rely

upon the expression of surface markers. Tumor and immune

cells were removed by selecting GFP+ CD45� cells only, with
Figure 1. Distinction of Melanoma Stromal Populations with Single-Ce

(A) Overview of experimental and sequencing workflow.

(B) t-Distributed Stochastic Neighbor Embedding (tSNE) visualization of all cells se

time (right).

(C) Expression of marker genes for each cell type. n = 32 mice.

cDC1/2, conventional dendritic cell; DC LN, lymph node dendritic cell; Endo lymp

tumor endothelial cells; fibroblast LN, lymph node fibroblast; MAIT, mucosal-as

macytoid DC.
the remaining stromal cells separated into CD31+ blood and

lymphatic endothelial cells and CD31� stromal populations. Sin-

gle cells were isolated from two animals per time point and pro-

filed using Smart-seq2 (Figures 1A and S1B).

After quality control (see Method Details and Figure S1C),

>4,600 cells were sequenced. Using graph-based clustering

(Satija et al., 2015) and known marker expression, numerous im-

mune and stromal populations were identified (Figures 1B, 1C,

S1D). Clusters denoting T cells, dendritic cells (DCs), and endo-

thelial cells separated according to their location in either the

tumor or LN, while other cell types clustered together irrespec-

tive of their site of origin. This indicates that particular popula-

tions possess site-specific transcriptional programs (Figure 1B).

Furthermore, sampling multiple time points across each site

enabled us to investigate temporal adaptations within each pop-

ulation (Figure 1B).

We provide these data in a browsable format online at http://

www.teichlab.org/data/.

Dynamics of Immune Cells
The innate immune system has the ability to detect malignant

cells and coordinate an anti-tumor response. Thus, we sought

to investigate relationships within these populations in both the

primary tumor and draining LN. Clusters corresponding to natu-

ral killer (NK) cells, plasmacytoid DCs (pDCs), and conventional

DCs (cDCs), as well as a mixture of macrophages, monocytes,

and neutrophils, were identified based on knownmarkers. These

included Macrophages/Monocytes/Neutrophils, Itgam (Cd11b);

Adgre1(F4/80); Fcgr1; Ly6c; Ly6g, NK Ncr1; pDCs, Bst2,

Siglech; and cDCs, Itgax (Cd11c) (Figures 2A–2C; Table S1).

Moreover, multiple DC populations were observed that reflect

the conventional DC (cDC) subsets cDC1 and cDC2. cDC1

and cDC2 titles were assigned based on the expression of

known markers, including Cd11c, Clec9a, Baft3 (cDC1),

Cd11b, Fcgr1, and Sirpa (cDC2) (Figures 2B and 2C). Two further

clusters were identified that lacked lineage markers for adaptive

immune cells and the classical DC integrins Cd11b and Cd11c,

yet expressed DC transcription factors Zbtb46, Baft3, Flt3, and

Id2. These populations were called migratory DCs (migDCs)

owing to the high levels of Ccr7; however, they may represent

DC precursors that later develop expression of Cd11c

(Figure S2A).

Each DC population further separated according to their loca-

tion in either the tumor or draining LN (Figure 2A). cDC1 cells in

the tumor expressed the dermal marker Cd103 (Itgae), whereas

their LN counterparts expressed Cd8a, a marker of LN resident

populations, indicating that these cells did not migrate from the

tumor. Cd11b+ mononuclear phagocytes (MPs) in the LN con-

sisted of Adgre1+ (F4/80) macrophages and Ccr2+ monocytes,
ll RNA-Seq

quencedwith each cell color coded for cell type (left), site of origin (center), and

h, lymphatic endothelial cell; endo LN, lymph node endothelium; Endo tumor,

sociated invariant T cell; migDC, migratory DC; NK, natural killer; pDC, plas-
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as well as a resident Cd11c+ cDC2 population (Figure 2B). A

comparison of equivalent tumor and LN clusters revealed that

myeloid cells located in the tumor displayed a more activated

phenotype. Tumor resident cells showed increased expression

of co-stimulatory molecules Alcam, Pvr, Tnfsf9 (4-1BBL), and

Tnfsf4 (OX-40L) and inflammatory cytokines Il1b and Tnf. How-

ever, tumor macrophages, cDC1 cells, and migDCs were also

more immunosuppressive, displaying higher levels of Arg1 (argi-

nase-1), Lgals9 (galectin-9), Cd247 (Pdl1), and Pdcd1lg2 (Pdl2),

respectively (Figure 2D). Although tumor macrophages ex-

pressed suppressive markers, no clear delineation between an

M1 or the pro-tumor M2 phenotype was observed (Figure S2B).

Within the tumor, expression of immunosuppressive molecules,

including Cd274 (PDL1) and Arg1, increased at later time points.

This temporal change in expression was further confirmed at the

protein level, within tumor Cd11b+ cells (Figures 2E and 2F). This

indicates that tumor resident myeloid populations are present

and activated at early stages of tumor growth, yet become

more suppressive as the tumor progresses (Figure 2G). Howev-

er, this phenomenon does not extend to the draining LN, sug-

gesting a subdued inflammatory response at this site. This is

particularly relevant in regard to cDC1 cells, which can cross-

present tumor antigen to cytotoxic T lymphocytes.

T cell populations from tumors and draining LNs were also

transcriptionally distinct, clustering based upon their subtype

and location (Figure 3A). At the LN, T cells exhibited amore naive

phenotype compared to those present at the tumor (Figure 3B).

While tumor resident CD4+ T cells were more activated, a signif-

icant proportion highly expressed Treg-associated genes at the

tumor (Figure 3B). Similarly, within the CD8+ T cell compartment,

those at the tumor were also more activated, expressing high

levels of Ifng (interferon g [IFNg]),Prf1 (perforin), andGzmb (gran-

zyme B). However, these cells were also less functional, which is

evident in the expression of Pdcd1 (pd1), Lag3, and Tim3 (Fig-

ure 3B). To identify transcriptional adaptations in CD8+ T cells

at the different stages of tumor development, we performed a

pseudotime analysis that revealed a trajectory of gene expres-

sion associated with functional changes in these cells. This

confirmed that the majority of T cells within the lymph node

were naive, displaying high expression of Sell and Tcf7 (Figures

3C and 3D; Table S2). Arrival at the tumor corresponded with the

acquisition of activation signatures, including the upregulation of

Ifng andGzmb. Furthermore, T cell receptor sequencing analysis

identified clonal expansion (Figures 3C), specifically within tu-

mors at later time points. This was accompanied by the expres-

sion of proliferation marker Mki67 and exhaustion markers

Pdcd1, Lag3, and Tim3 at the RNA level (Figures 3C and 3D),
Figure 2. Myeloid Cell Clusters in the Tumor Exhibit Suppressive Char

(A) tSNE plot of individual myeloid cells colored by site (tumor, dark gray; lymph

(B) tSNE plots showing the expression of selected marker genes for macrophag

(C) Violin plots showing the expression of selected surface marker genes within

(D) Heatmap showing mean expression (log(TPM+1)) of co-stimulatory and supp

(E) Heatmap showing the relative expression (Z score) of co-stimulatory and sup

(F) Flow cytometric analysis of tumor infiltrating CD11b+ cells for the expression

means ± SEMs; day 6 n = 12 independent mice and day 11 n = 11 independent

(G) Schematic diagram of the co-stimulatory and inhibitory receptors-ligands ex

For (A)–(E) and (G), n = 17mice. cDC1/2, conventional dendritic cell; pDC, DC LN,

plasmacytoid DC.
which is consistent with reports of cell differentiation from naive

cells, through a transitional state, toward dysfunction in human

melanoma (Li et al., 2019). Furthermore, a highly proliferative,

early dysfunctional population, consistent with our proliferative

exhausted population, was also observed in the same study (Li

et al., 2019). Flow cytometry analysis confirmed enhanced tu-

mor-infiltrating CD8+ T cells with concurrent tumor-specific pro-

liferation and increasing PD1 expression, at later time points

(Figures 3E). A tumor-specific increase in Lag3 expression

compared to LNs was also detected at the protein level (Fig-

ure S2C). A subset of the potentially exhausted CD8+ T cells

also showed the expression of Entpd1 (CD39), which was

recently identified as a marker to distinguish tumor-specific

and bystander CD8+ T cells (Simoni et al., 2018). These results

indicate that T cell recruitment from the LN is followed by activa-

tion and subsequent functional defects in situ. These functional

defects correspond with the gain of immunosuppressive proper-

ties inmyeloid populations at later time points, indicating that the

immune stroma transitions from immunogenic to suppressive

phenotypes.

Tumor Stroma Comprise Three Distinct Functional
Populations
As the stroma is emerging as a potent immune modulator, we

also examined this compartment during tumor progression.

We identified three distinct CD31� stromal populations, referred

to as Stromal 1, 2, and 3 (Figure 4A; Table S3). The expression of

commonly used mesenchymal markers confirmed this identity,

but as expected, individual markers were extremely variable

from cell to cell and across clusters (Figures 4B and S3A). How-

ever, marker combinations could be associated with particular

clusters. Stromal 1(S1) was distinguished from S3 by high levels

of Pdpn, Pdgfra, andCd34, while Acta2 (aSMA) was strongly ex-

pressed by the latter. S2 represented an intermediate population

that expressed Pdpn and Pdgfra, yet displayed low expression

of Acta2 and Cd34 (Figure 4B).

Each cluster displayed distinct functional signatures (Figures

4C and S3B), indicating the existence of specific roles within

the TME. S1 (Pdpnhigh Pdgfrahigh Cd34high) likely engages in im-

mune crosstalk; upregulating genes involved the recruitment

and regulation of immune cells. These included the cytokines

Cxcl12, Csf1, and Ccl8; cytokine receptors Il6ra and Il6st; and

components of the complement cascade C3, C2, and C4b. In

contrast, S2 (Pdpnhigh Pdgfrahigh Cd34low) upregulated genes

encoding extracellular matrix (ECM) components, including

numerous collagen family members such as Postn and Tnc.

These ECM components are strongly associated with a fibrotic
acteristics

node, light gray) and clusters marked by colored lines.

es and inflammatory and resident monocytes.

each cell cluster displayed as log (TPM+1). TPM, transcript count per million.

ressive genes for the identified cell clusters.

pressive genes in all innate immune cells over time.

of suppressive markers PDL1 and Arg 1 at days 6 and 11. Data presented as

mice. ****p < 0.0001 (t test).

pressed on distinct myeloid subpopulations.

lymph node dendritic cell; migDC, migratory DC; MP, mononuclear phagocyte;
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matrix, a feature common to developed tumors (Bonnans et al.,

2014) and implicated in immune exclusion. Thus, this population

may drive the desmoplastic reaction. S3 (Acta2high) likely repre-

sents a more contractile stromal subset, expressing genes

involved in the regulation and rearrangement of the actin cyto-

skeleton. In particular, this cluster upregulated Rock1, Mlc2,

and Mlck, which are responsible for the contraction of actin

stress fibers. While all three stromal populations expressed

fibroblast markers, indicating that they represent melanoma

CAFs, S3 also expressed some pericyte-associated markers

such as Cspg4 (Ng2), Mcam, and Rgs5 (Figure S3C). Many of

the same markers were detected in LN Pdpn+ fibroblasts

(FRCs) (Figure S3D), indicating promiscuous expression that is

not limited to pericytes. Thus, to clarify whether S3 represents

a pericyte or fibroblast population in murine melanoma, we

examined the expression of aSMA and neuron-glial antigen 2

(NG2) in relation to the endothelial marker CD31. While NG2+

and aSMA+ cells were observed surrounding vessels in adjacent

skin, they were less frequently associated with intratumoral

vessels. Furthermore, both markers could be detected in peritu-

moral spindle-shaped cells that are distinct from the vasculature

(Figures S4A and S4B). Thus, the precise cellular identity of S3

remains elusive and may represent both pericytes associated

with the vasculature andmore fibroblast-like cells that are disso-

ciated from vessels.

The collection of samples at different time points across tumor

growth enabled us to examine the dynamics of the stromal

compartment as a tumor develops. Eachpopulationwas detected

throughout the time course; however, clusters dominated at

different points. The stromal compartment fromearly day 5 tumors

primarily comprised S1 and S2, whereas the S3 population was

largely restricted to later stages, implying a selective enrichment

in established tumors (Figures 4D and 4E). While cells within S1

resembled tissue resident fibroblasts of both mouse and human

skin (Figure 4G), Mki67 was observed specifically in S2 and S3,

supporting the concept of proliferative enrichment at later time

points (Figure 4F). Increasing proliferation in S3 was confirmed

by the incorporation of the thymidine analog EdU (Figure S4C).

Recruitment of bone marrow-derived mesenchymal cells to the

TME has also been reported (Direkze et al., 2004; Quante et al.,

2011;Razet al., 2018). To investigatewhether this alternate source

contributes to the expansion of S3, bone marrow chimeric mice

were generated (Figure S4D). In our hands, few bone marrow-

derived stromal cells (GFP+) were detected, suggesting a negli-

gible influence on the tumor stromal niche in this model.

We next used the marker repertoires identified to validate

these different populations in the TME. Consistent with our
Figure 3. T Cells Recruited from Lymph Nodes Are Activated In Situ

(A) tSNE plot of individual T cells colored by site (tumor, dark gray; lymph node,

(B) Heatmap showing relative expression (Z score) of functional gene groups for

(C) Pseudotime analysis of CD8+ T cell gene trajectories colored by site (left), c

direction.

(D) Expression of activation-associated genes along the inferred pseudotime col

(E) Flow cytometric analysis of T cells isolated from skin and day 5 and 11 tum

quantified, as was proliferation (Ki67) and PD1 expression. Data presented as me

****p < 0.0001 (two-way ANOVA with a Sidak post hoc test).

For (A)–(D), n = 10 mice.
sequencing data, confocal imaging revealed that the S1/S2

markers PDPN and PDGFRa largely colocalized, while the

expression of aSMA was more distinct (Figure 5A). The immune

S1 marker CD34, colocalized with both PDPN and PDGFRa,

indicated the presence of a CD34highaSMAlow stromal subset

(Figure 5A). However, some colocalization between aSMA and

PDGFRa, PDPN, and CD34 was observed. This may represent

the intermediate PDPNhigh PDGFRahigh S2 population, which

also expressed low levels of CD34 and aSMA. Flow cytometry

further confirmed the presence of CD34high aSMAlow (S1),

CD34low aSMAlow (S2) in normal skin, and within tumors (Figures

5B, S4E, and S4F). In contrast, CD34low aSMAhigh (S3) was rare

in normal skin, becomingmost prevalent at later time points (Fig-

ures 5B, S4E, and S4F), in line with kinetics described in

sequencing data. To explore the inflammatory phenotype

associated with S1 in more detail, we focused on the immuno-

modulatory factors CXCL12 and CSF1 and the complement

component C3. At the protein level, intracellular CXCL12 expres-

sion was higher in S1 and S2 than in S3 (Figure 5C). While S1 pro-

duced CXCL12, high levels were also detected in S2; however,

the majority of this was surface associated, which is indicative

of extracellular binding specifically to this population (Fig-

ure S5A). In contrast, complement component C3 was consis-

tently and predominantly detected in S1 cells across all of the

time points examined (Figures 5C, S5B, and S5C). Confocal im-

aging also showed CD34high CAFs to be a source of CSF1 in the

tumor stroma (Figure 5D), but this was less specific at the protein

level, with staining detected in other stromal populations. These

data illustrate that the stromal compartment acquires the capac-

ity to influence the tumor immune landscape from early stages of

development and are dynamic, adapting to the changing re-

quirements of a rapidly growing and evolving tumor (Figure 5E).

To determine whether the identified populations are present in

other tumor types, we examined models of murine breast and

pancreatic cancers. In orthotopically implanted E0771 breast tu-

mors, the stromal markers distinguishing S1 and S2 from S3

were largely conserved; however, subtle differences in their dis-

tribution were detected. While PDPN and PDGFRa colocalized,

we also observed some distinction between these markers, as

well as a subset of CD34+ cells. However, aSMA expression re-

mained more discrete (Figure 5F). In breast tumors, C3 expres-

sion was specific to CD34high aSMAlow stromal cells at both early

and late time points consistent with the melanoma model (Fig-

ures 5G, S5D, and S5F; tumor volumes in Figure S5E). Reflecting

the temporal dynamics seen in melanoma, aSMAhigh stromal

populations dominated in advanced KPC pancreatic tumors,

yet were absent in the normal pancreas. Conversely, pancreatic
light gray) and annotated subpopulations marked by colored lines.

cell clusters.

lonal expansion (center), and tumor stage (days, right); arrow indicates time

ored by site; lymph node (green), tumor (blue).

ors, as well as their draining lymph nodes. The number of CD8+ cells was

ans ± SEMs, n = 4 independent mice for each condition. *p < 0.05, ***p < 0.001,
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stellate cells were predominantly CD34high (Figures S5G–S5J).

Publicly available RNA-seq data of KPC-derived CD34+ and

CD34� stromal populations further showed transcriptional sig-

natures similar to S1 and S2/S3 populations, respectively, as

well as CD34+-specific C3 expression (Figures S5K and S5L).

These data indicate that major stromal subsets and associated

products are preserved across tumor types, albeit with subtle

tissue-derived differences.

Crosstalk between the Immune S1 Population and
Infiltrating Myeloid Cells
Next, we sought to elucidate the potential functional conse-

quences of specific stromal populations to the ensuing immune

response. Focusing on the early S1 immune subset, we exam-

ined crosstalk with responsive immune populations recruited

to the tumor. To systematically study interactions within the

TME, we predicted cell-cell communication networks based on

CellPhoneDB, a manually curated repository of ligands, recep-

tors, and their interactions integratedwith a statistical framework

to infer enriched interactions from single-cell transcriptomic data

(Vento-Tormo et al., 2018). This approach highlighted the likely

interactions involved in angiogenesis, immune cell recruitment,

and immunomodulation between stromal populations in the tu-

mor (Figure 6A; Table S4).

Building on the observations of stromal-derived immunomod-

ulatory factors CSF1, CXCL12, and C3, among others (Figures

5C and 5D), CellPhoneDB identified stromal-immune interac-

tions between C3/CXCL12/CSF1-expressing stromal cells and

macrophages positive for C3AR1, CXCR4, and CSFR1, respec-

tively (Figures 6A and 6B). Confocal imaging verified predicted

interactions in the tumor stroma, illustrating CSFR1+, CXCR4+,

and C3aR+ myeloid cells in close contact with CD34high fibro-

blasts (Figure 6C). The combination of transcriptome profiling

and cell-cell communication pipeline enabled us to assign these

immune interactions specifically to the S1/S2 subpopulations.

Further statistically significant chemokine-receptor interactions

occurred between the immune S1 subpopulation, myeloid,

Treg, and CD8+ T cells (Figure 6A). Intratumoral myeloid popula-

tions exhibited the capacity to both attract T cells, via specific

cytokine-receptor signals such as CXCL10, CCL22, and CCL5,

and suppress their function through the PDL1-PD1 axis (Fig-

ure 6A). Our pipeline also predicted interactions between tu-

mor-infiltrating immune populations, including the recruitment

of NK cells through cDC1 cell-derived chemokine receptors

XCR1 (Böttcher et al., 2018). Moreover, we found that Tregs ex-

press high levels of Nt5e (CD73) and Entpd1 (CD39; Figures 3B
Figure 4. Distinct Fibroblast Clusters Identified in Melanoma Tumors

(A) tSNE plot of sequenced CD31� stromal cells from tumors colored by their as

(B) Heatmap showing average expression (log(TPM+1)) of typical mesenchymal

(C) Heatmap of Gene Ontology (GO) pathways for differentially expressed gene

plement cascade, extracellular matrix interactions, and actin cytoskeleton. Colu

(D) Sequencing data represented as a bar plot, depicting the ratio of stromal popul

to the percentage of total stromal cells each population represents. Data present

hoc test).

(E) tSNE plot of sequenced fibroblasts from tumors by tumor time point (right).

(F) tSNE visualization of the proliferation marker Mki67 in the CAFs.

(G) Heatmap depicting logistic regression analysis of normal mouse skin, indicatin

melanoma samples, n = 7 mice. scRNA-seq of healthy murine skin samples, n =
and 6A), which act together to convert ATP to adenosine, the

release of which has been shown to dampen the immune system

(Vijayan et al., 2017). Their receptors, Adora2a and Adora2b,

were found to be upregulated on migratory DCs and macro-

phages, respectively.

Next, we exploited the resource created by our single-cell data

and interactions database to explore the functional role of the

identified S1-produced candidates. While CXCL12 was

expressed by stromal cells, it was also detected within other

compartments, including tumor and endothelial cells (Figures

6D and S5A). In contrast, the expression of C3, at the RNA and

protein levels, was specific to the S1 population, even in the

wider tumor context and in multiple tumor types (Figures 6D,

S5A, and S5F). C3 is cleaved to form the anaphylatoxin C3a,

which is known to regulate immune populations. Thus, we

focused on the consequences of perturbing this C3a-C3aR S1-

myeloid interaction within the developing tumor. Neutralization

of C3a in established tumors significantly slowed growth

compared with immunoglobulin G (IgG) controls (Figure 6E).

Furthermore, anti-C3a-treated tumors contained fewer macro-

phages and more Ly6C+ monocytes, specifically at day 6, the

point at which C3a-C3aR interactions were predicted to be key

mediators of myeloid cell recruitment (Figure 6E). Although the

expression of the suppressive molecule PDL1 was not affected

by anti-C3a treatment, the density of CD8+ T cells (per cubic

millimeter) increased at later time points of treated tumors. Simi-

larly, antagonism of the C3a receptor with SB290157 also

reduced macrophage infiltration while increasing the number of

Ly6C+ cells (Figures S6A and S6B). The inversion of F4/80+

macrophage and Ly6C+ monocyte numbers suggests that the

differentiation of infiltrating monocytes to macrophages may

be inhibited upon the neutralization of C3a. To corroborate that

C3a disruption did not directly affect CD8 T cells, we confirmed

the expression of C3aR on both macrophages and Ly6C+

myeloid cells, but not T cells at the RNA and protein levels (Fig-

ures 6B and S6D). This supports our sequencing data, indicating

that the recruitment of suppressive myeloid cells contributes to

CD8 T cell suppression. However, other T cell populations

were unaffected by C3a neutralization in the TME (Figure S6C).

Thus, disrupting signaling between stromal cells and infiltrating

myeloid populations has the potential to affect subsequent inter-

actions between the innate and adaptive compartments and

promote a better anti-tumor immune response.

Having identified the stromal interactions conserved between

murine tumors, we next examined human tumors for the same

candidates. We subclustered the stromal compartment of a
sociated cluster.

markers.

s in each cluster, including cytokine-chemokine receptor interactions, com-

mns represent individual cells and rows display Z scores.

ations at each time point examined. The size of each colored bar is proportional

ed as means ± SEMs, n = 7 mice. *p < 0.05 (two-way ANOVA with Tukey post

g to which of the 3 stromal clusters these cells are most similar. scRNA-seq of

2 mice. scRNA-seq of healthy human skin, n = 1 sample.
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human melanoma dataset (Tirosh et al., 2016) and identified

distinct populations with markers similar to our S1, S2, and S3

populations (Figures 7A and 7B). Significantly, among the poten-

tial immune-stromal interactions identified (Figure 7C), the spe-

cific C3a-C3aR interaction between S1 cells and macrophages

was retained in human melanoma (Figures 7C and 7D). This

interaction was further verified in human head and neck cancer

in which the three stromal clusters were also present (Figures

7E–7H). These data indicate a more widespread conservation

of CAF-macrophage crosstalk through the C3a-C3aR axis,

which translates to multiple tumors and species. Finally, using

different The Cancer Genome Atlas (TCGA) datasets, we also

demonstrated that in some cancer types, high C3 expression

is associated with shorter progression-free survival (Figure S7).

Collectively, these findings provide fundamental insights into

the complex interplay among cells within the evolving TME in

which multiple immunosuppressive mechanisms coexist (Fig-

ure 6F) and highlight the potential of comprehensive datasets

to exploit and manipulate CAF-derived immunomodulatory fac-

tors found within an increasingly heterogeneous stromal

compartment.

DISCUSSION

It is becoming increasingly evident that non-malignant stromal

cells provide significant and varied supporting roles as tumors

progress. The heterogeneity and dynamic nature of the TME

can make identification of the roles of the different immune

and stromal components challenging. The emergence of

scRNA-seq has enabled deeper insights into tumor biology,

revealing the true degree of intratumoral heterogeneity, not

detectable by previous methods (Costa et al., 2018; Elyada

et al., 2019; Puram et al., 2017; Tirosh et al., 2016). In this study,

we used a single-cell transcriptomic approach to characterize

the tumor landscape within the changing TME and associated

LNs.We identified the gradual development of a suppressive im-

mune microenvironment, specifically in the tumor, as well as

discrete stromal subsets with distinct functional signatures.

The examination of immune-stromal interactions using the

CellPhoneDB database of receptor-ligand interactions (Vento-

Tormo et al., 2018) highlighted the complexity of crosstalk
Figure 5. Conservation of Fibroblast Subpopulations between Murine

(A) Representative confocal images of PDPN, PDGFRa, and aSMA in combinatio

day 5 and day 11 tumors. Dashed line indicates the tumor border. Scale bars, 1

(B) Flow cytometry quantification of the proportion of each stromal population

population. Skin, n = 8 mice; day 5, n = 25 mice; day 11, n = 30 mice.

(C) Flow cytometric quantification of intracellular CXCL12 and C3 expression in

normalized to the CD34high aSMAlowpopulation. CXCL12, n = 42 tumors; C3, n =

(D) Representative confocal images of CSF1 expression in CD34+ stromal popula

n = 2 independent mice.

(E) Schematic diagram of the 3 stromal subpopulations.

(F) Representative confocal images of stromal population markers in orthotopic E

aSMA in combination (top panel) or CD34 in combination with either PDPN, PD

asterisk indicates colocalization between CD34 and PDPN or PDGFRa; arrowhead

100 mm; images represent at least n = 3 independent mice.

(G) Flow cytometric quantification of intracellular C3 expression in each E0771 br

16 normalized to the CD34high aSMAlow. n = 8 independent mice. Each point repr

0.001, ****p < 0.0001; one-way ANOVA with a Tukey post hoc test.
between different components of the microenvironment. These

interactions were conserved in human tumor tissue.

The immune system, particularly T cells and macrophages,

plays key roles in deciding tumor fate and the response to ther-

apy (Angell et al., 2020; Galon and Bruni, 2020; Galon et al.,

2006; Sato et al., 2005). Here, we showed site-specific behavior

in tumor-associated tissues, identifying distinct gene signatures

between populations of the tumor and draining LNs. Pseudotime

analysis illustrated that while LNs act as a source of naive T cells,

once at the tumor, T cells rapidly transitioned from the naive state

through clonal expansion and activation phases (enriched gran-

zyme and IFN expression). As expected, in late stages of tumor

growth, T cells upregulated exhaustion markers in late tumors

(PD1 and Lag3). The presence of both proliferative and non-

cycling exhausted populations indicates an intermediate

dysfunctional state, whose exhaustion programs can be

reversed before differentiation to a terminally exhausted state

(Blank et al., 2019). Similar to T cells, tumor myeloid populations

were more activated than their LN counterparts. Coincident with

the emergence of T cell dysfunction markers, myeloid cells

increased the expression of suppressive factors such as PDL1

and Arg1. This indicates that while LNs act as a T cell reservoir,

activation occurs within the tumor itself, followed by the onset of

dysfunction markers and myeloid-driven exhaustion in late

disease.

While infiltrating immune populations have a profound effect

on tumor fate, stromal cells also play a key supporting role in

the TME (Kalluri, 2016). However, the development of increas-

ingly diverse populations may underpin conflicting reports

regarding anti-tumor versus pro-tumor functions (Feig et al.,

2013; Özdemir et al., 2015), making the identification, functional

characterization, and tissue-specific features underlying stromal

divergence within tumors a priority. Our analysis revealed the ex-

istence of three stromal subsets—immune, desmoplastic, and

contractile—each possessing unique characteristics indicative

of distinct and specialized roles during tumor development.

These subsets are in line with recent studies examining the

ecosystem of human solid tumors (Bartoschek et al., 2018;

Costa et al., 2018; Elyada et al., 2019; Lakins et al., 2018; Lam-

brechts et al., 2018; Li et al., 2017; Öhlund et al., 2017; Puram

et al., 2017). While subtle tissue-specific differences in S1-
Tumor Types

n, or CD34 in combination with either PDPN, PDGFRa, or aSMA (right panel) in

00 mm; images represent at least n = 3 independent mice.

at day 5 and day 11 tumors, displayed as a percentage of the total stromal

each population presented as fold change in mean fluorescence at day 11,

12 tumors.

tions in day 5 and day 11 tumors. Scale bars, 50 mm; images represent at least

0771 breast tumors. Representative confocal images of PDPN, PDGFRa, and

GFRa, or aSMA (bottom panel). Dashed line indicates the tumor border. The

indicates CD34 expression that is distinct from PDPN or PDGFRa. Scale bars,

east stromal population presented as fold change in mean fluorescence at day

esents a tumor. Data presented as means ± SEMs. *p < 0.05, **p < 0.01, ***p <
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associated cytokines and chemokines were seen across cancer

types, our data showed that C3 is specifically and consistently

upregulated by CD34high populations in multiple mouse models

and human datasets. Consistent with other studies, both S3

and LN FRCs shared some typical pericyte markers, such as

Rgs5 (Costa et al., 2018; Cremasco et al., 2018; Lambrechts

et al., 2018). While this could imply pericyte contamination, S3

also produced significant amounts of matrix components such

as Col1a1, Col1a2 (collagen1), Fn1 (fibronectin1), and Sparc,

which are strongly indicative of a fibroblast phenotype. Hence,

S3 may embody a mixed population of mesenchymal cells that

share similar surface marker expression and functional proper-

ties. Alternatively, fibroblasts within S3may be derived from peri-

cyte populations, as has been observed during fibrosis and

tumor development, in which pericytes dissociate from vessels

and adopt amyofibroblast phenotype (Chen et al., 2011; Hosaka

et al., 2016; Lin et al., 2008; Mederacke et al., 2013),

Our data extend beyond the classification of stromal subsets,

providing insight into the kinetics of increasing functional diver-

gence and heterogeneity as the tumor develops. The dominance

of S1 and S2 at early time points versus expansion of S3 at later

stages is likely the result of events within the adjacent transform-

ing environment, which alter the phenotype, secretory profiles of

surrounding cells, and tissue mechanics. Biophysical cues such

as matrix rigidity are critical for the maintenance of CAF pheno-

types and the induction of aSMA expression (Calvo et al., 2013;

Arora et al., 1999; Li et al., 2007). Thus, consistent with infer-

ences from our work and others, the combination of a remodeled

and stiffenedmatrix by desmoplastic S2 fibroblasts and cytokine

exposure may induce the expansion of contractile S3 cells in

developed tumors (Feig et al., 2013; Raz et al., 2018). For

example, in late-stage breast cancer, the expansion of S3-like

cells was accompanied by a decrease in matrix-producing fibro-

blasts (Bartoschek et al., 2018). Such temporal changes may

also be supported by the recruitment of mesenchymal cells

from the bone marrow (Raz et al., 2018), although this was not

the case in B16. Overall, subtle differences in the marker expres-

sion, functional properties, and temporal dynamics of fibroblast

populations likely reflects the local milieu of soluble factors, me-

chanical cues, and environmental pressures unique to the tumor

type and surrounding tissue at each stage of development.

The sequencing of matched immune and stromal populations

enabled us to investigate signaling between different compart-
Figure 6. Stromal-Immune Crosstalk Supports the Development of an
(A) Overview of selected statistically significant interactions between stromal su

CellPhoneDB. Size indicates p values (permutation test, see STAR Methods), an

(B) Violin plots displaying expression log(TPM+1) of ligands Cxcl12, Csf1, and C

ulations. n = 26 mice.

(C) Confocal images of representative tumor-tissue borders. CXCR4, CSFR1, or C

red, CXCR4, CSF1R, or C3aR; white, PDPN; blue, CD34). Scale bars, 50 mm.

(D) Flow cytometric quantification of CXCL12 and C3 expression across com

CXCL12 n = 42 tumors, C3 n = 12 tumors. One-way ANOVA with Tukey post ho

(E) In vivo blockade of C3a in established tumors. Top left: experimental design

treated with IgG control (blue) or anti-C3a (red); bottom left: myeloid infiltration in d

and Ly6C+ Ly6G� cells are shown as a percentage of Cd11b and CD45 cells, res

displayed as raw counts normalized to tumor volume (in cubic millimeters). Data

****p < 0.0001; t test.

(F) Schematic diagram of the dynamic crosstalk identified within the tumor micro
ments in the TME and highlighted the C3a-C3ar1 axis in

S1-myeloid crosstalk. C3 was produced most specifically by

CD34high S1 cells, and relevant to the clinic, CD34high CAFs also

represented the primary source of C3 in human melanoma and

head and neck cancer (Puram et al., 2017; Tirosh et al., 2016).

Elevated C3 and C3a have been detected at the primary tumor

and in the serum of several solid cancers and are associated

with poor prognosis in ovarian cancer (Canales et al., 2014;

Chen et al., 2013; Cho et al., 2014; Gast et al., 2009; Habermann

et al., 2006). Such results have led to a growing interest in the role

of complement activation in cancer, yet little investigation into

the source of complement components has been performed.

The specific production of C3 by CD34high CAFs indicates that

this fibroblast subset may offer a therapeutic target or biomarker

application in multiple cancer types. The disruption of C3a-C3aR

in tumor-bearing mice slowed tumor growth and reduced infil-

trating F4/80+ macrophages, which is consistent with studies in-

hibiting tissue regeneration (Nabizadeh et al., 2016; Zhang et al.,

2017). Concurrently, we observed an increase in Ly6C+ mono-

cytes, indicating that macrophages are derived from recruited

monocytes, which supports a critical role for C3a inmonocyte dif-

ferentiation. The effects observed coincided with increased CD8

T cell numbers per cubic millimeter at later time points. While

the inhibition of C3a signaling has been reported to affect T cell

phenotypes, we did not detect C3aR on their surface (Kwan

et al., 2013; Martin et al., 1997; Quell et al., 2017; Strainic et al.,

2013; van der Touw et al., 2013). Thus, alterations in the T cell

composition upon C3a neutralization are potentially induced by

changes in myeloid populations, implying that the recruitment of

macrophages and their products can influence T cell infiltration

and behavior. Current trials investigating the efficacy of (human-

specific) small-molecule inhibitor compstatin and its derivatives

(AMY-101 and APL2) which prevent C3 cleavage (Harris, 2018),

may be of interest for tumor therapy in the context of CD34high

CAFs. Furthermore, owing to their role in immune regulation,

complement therapies have been combined with checkpoint in-

hibitors (Ajona et al., 2017; Corrales et al., 2012; Markiewski

et al., 2008). Thus, it is possible that the stromal-driven inhibitory

effects we observed upon the neutralization of C3a may be

enhanced if given in combination with immunotherapies.

In summary,wehavedemonstrated the power of scRNA-seq to

define the landscape of the TME and serve as a resource for iden-

tifying candidates with therapeutic potential. We identified three
Immunosuppressive Niche
bsets and other cell types using a cell-cell communication pipeline based on

d color indicates the means of the receptor-ligand pairs between 2 clusters.

3 and cognate receptors Cxcr4, Csf1r, and C3ar1 on respective stromal pop-

3aR expressingmacrophages located proximally to CD34+ CAFs (green, F4/80;

partments of the tumor microenvironment. Each point represents a tumor.

c test.

and treatment regimen; top right: tumor volume (in cubic millimeters) of mice

ay 6 tumors, after 24 h of treatment with IgG or anti-C3a. The number of F4/80

pectively; bottom right: the number of tumor-infiltrating CD8+ T cells at day 11,

presented as means ± SEMs. n = minimum 13 mice. **p < 0.01, ***p < 0.001,

environment.
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stromal clusters with distinct functional and temporal features,

highlighting the dynamic and adaptive nature of both immune

and stromal populations to reveal potential crosstalk between

these two compartments. By supporting the recruitment and in-

duction of an immunosuppressive macrophage phenotype, the

immune stromal subset may provide an alternative, indirect

mechanism to dampen T cell-mediated anti-tumor immunity.
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Antibodies

Rat CD45 APC-Cy7 Biolegend Cat# 103116, RRID:AB_312981

Rat CD45 FITC Biolegend Cat# 103108, RRID:AB_312973

Rat CD45 BV785 Biolegend Cat# 103149, RRID:AB_2564590

Rat CD31 PE-Cy7 eBioscience Cat# 102417, RRID:AB_830756

Rat CD31 biotin eBioscience Cat# 102503, RRID:AB_312910

Syrian Hamster PDPN APC Biolegend Cat# 127410, RRID:AB_10613649

Armenian Hamster CD3e 488 Biolegend Cat# 100321, RRID:AB_389300

Armenian Hamster CD3e PE Biolegend Cat# 100308, RRID:AB_312673

Mouse NK1.1 PE Biolegend Cat# 108707, RRID:AB_313394

Rat CD4 PE-Cy7 Biolegend Cat# 100422, RRID:AB_312707

Rat CD8a 780 Biolegend Cat# 100714, RRID:AB_312753

Rat CD8a BV-785 Biolegend Cat# 100749, RRID:AB_11218801

Rat CD8a PE Biolegend Cat# 100708, RRID:AB_312747

Rat FOXP3 PerCp Cy5.5 eBioscience Cat# 45-5773-82, RRID:AB_914351

Rat Lag3 Biotin Biolegend Cat# 125205, RRID:AB_961177

Rat PDL1 PE-Cy7 Biolegend Cat# 124314, RRID:AB_10643573

Rat PDL1 APC Biolegend Cat# 124312, RRID:AB_10612741

Rat Arginase 1 APC eBioscience Cat# 17-3697-82, RRID:AB_2734835

Rat PD1 APC Biolegend Cat# 109112, RRID:AB_10612938

Rat Ki67 Biolegend Cat# 652418, RRID:AB_2564269

Rat IL-7Ra APC Biolegend Cat# 135011, RRID:AB_1937217

Rat B220 488 Biolegend Cat# 103228, RRID:AB_492874

Rat CD11b APC-Cy7 Biolegend Cat# 101226, RRID:AB_830642)

Rat CD11b 647 Biolegend Cat# 101218, RRID:AB_389327

Armenian Hamster CD11c PE-Cy7 Biolegend Cat# 117318, RRID:AB_493568

Rat Ly6C FITC BD PharMingen Cat# 561085, RRID:AB_10584332

Rat Ly6G PE-Cy7 Biolegend Cat# 127617, RRID:AB_1877262

Rat F4/80 FITC eBioscience Cat# 11-4801-82, RRID:AB_2637191

Rat F4/80 APC-eFluor780 eBioscience Cat# 47-4801-82, RRID:AB_2735036

Mouse aSMA 488 Thermo Fisher Cat# 53-9760-82, RRID:AB_2574461

Mouse aSMA eFluor570 Thermo Fisher Cat# 41-9760-82, RRID:AB_2573631)

Rat PDGFRa Biotin Biolegend Cat# 135910, RRID:AB_2043974

Rat PDGFRb Biotin Biolegend Cat# 136010, RRID:AB_2236916

Rat Thy1 APC-Cy7 Biolegend Cat# 105328, RRID:AB_10613293

Armenian Hamster CD34 APC Biolegend Cat# 119310, RRID:AB_1236469

Rat CD34 660 eBioscience Cat# 50-0341-82, RRID:AB_10596826

Mouse CXCL12 PE R&D Systems Cat# IC350C, RRID:AB_1964552

Rat C3 PE Novus Cat# NB200-540, RRID:AB_10003444

Syrian Hamster PDPN Biolegend Cat# 127402, RRID:AB_1089187

Rabbit aSMA abcam Cat# ab5694, RRID:AB_2223021

Goat PDGFRa R&D Systems Cat# AF1062, RRID:AB_2236897

Rat CD34 eBioscience Cat# 14-0341-82, RRID:AB_467210

Rat CD34 488 eBioscience Cat# 11-0341-82, RRID:AB_465021
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Continued
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Rat F4/80 AbDserotech Cat# MCA497, RRID:AB_2098196

Rat F4/80 488 AbDserotech Cat# MCA497A488T, RRID:AB_1102554

Rat CXCR4 R & D Systems Cat# MAB21651, RRID:AB_2261636

Sheep CSFR1 R & D Systems Cat# AF3818, RRID:AB_884158

Rabbit CSF1 ABGENT ABO12249

Rabbit NG2 abcam Cat# ab83178, RRID:AB_10672215

Rat CD31 Biolegend Cat# 102502, RRID:AB_312909

Rabbit C3aR Invitrogen Cat# PA5-29979, RRID:AB_2547453

Rat Ly6C APC BD PharMingen Cat# 560595, RRID:AB_1727554

Rat Cd11b biotin Biolegend Cat# 101204, RRID:AB_312787

Chemicals, Peptides, and Recombinant Proteins

Anti C3a Hycult Biotech Cat# HM1072, RRID:AB_10130227

SB 290157 Sigma cat# 559410

Deposited Data

scRNA-seq This paper ArrayExpress: E-MTAB-7427

scRNA-seq This paper ArrayExpress: E-MTAB-7417

Experimental Models: Cell Lines

B16.F10 melanoma cell line American Type Culture Collection (ATCC) ATCC Cat# CRL-6475, RRID:CVCL_0159

E0771 breast cancer cell line CH3 BioSystems Cat# 94A001 RRID:CVCL_GR23

Experimental Models: Organisms/Strains

Mouse C57BL/6 Harlan Reference# 057

Mouse C57BL/6-Tg(CAG-EGFP)131Osb/

LeySopJ

Jackson Laboratory Stock# 003291

Software and Algorithms

Salmon (version 0.8.2) (Patro et al., 2017) https://combine-lab.github.io/salmon/

R version R Foundation https://www.r-project.org

Seurat (version 2.3.4) (Satija et al., 2015) https://satijalab.org/seurat/

Monocle (version 2.8.0) (Qiu et al., 2017) http://cole-trapnell-lab.github.io/

monocle-release/

TraCeR (Stubbington et al., 2016) https://github.com/teichlab/tracer

gprofiler (Raudvere et al., 2019) https://biit.cs.ut.ee/gprofiler/gost

scran (Scialdone et al., 2015) https://bioconductor.org/packages/

release/bioc/html/scran.html

CellPhoneDB (Vento-Tormo et al., 2018) https://www.cellphonedb.org/

CellRanger (version 2.2.0) 10x Genomics https://www.10xgenomics.com/

Python Python Software Foundation https://www.python.org/

DESeq2 (Love et al., 2014) https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Other Datasets

scRNA-seq (Hagai et al., 2018) ArrayExpress: E-MTAB-6831

Bulk RNA-seq (Feig et al., 2013; Özdemir et al., 2015) GEO: GSE42605

scRNA-seq (Tirosh et al., 2016) GEO: GSE72056

scRNA-seq (Puram et al., 2017) GEO: GSE103322

TCGA normalized expression data TCGA (Colaprico et al., 2016) R package TCGAbiolinks released under

GPLv3 License http://bioconductor.org/

packages/TCGAbiolinks/

Survival data TCGA, ICGC (Cerami et al., 2012; Gao et al.,

2013).

cBio Cancer Genomics Open Portal http://

www.cbioportal.org
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jacque-

line D Shields (js970@mrc-cu.cam.ac.uk)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
All cell lines were cultured according to protocols provided by the suppliers. The C57BL/6 derived B16.F10 melanoma cell line was

purchased from American Type Culture Collection (ATCC) and cultured in Dulbecco’s Modified Eagle medium (DMEM, Life Technol-

ogies), supplemented with 1% Penstrep and 10% FBS. 2.5 x105. The E0771 breast cancer cell line was purchased from CH3

BioSystems and cultured in RPMI (Sigma) supplemented with 10% FBS, 1% PS and 10mM HEPES. Cells were maintained at

37�C in 5% CO2 in a humidified incubator and passaged every 3 days.

Mice
Animals were housed in accordance with UK regulations and experiments were performed under project licenses PPL 80/2574 or

PPL P8837835. Wild-type (WT) C57BL/6 mice, or C57BL/6-Tg(CAG-EGFP)131Osb/LeySopJ mice (Stock number 003291, Jackson

Laboratory) were socially housed in individually ventilated cages with cage enrichment. Routine husbandry and care was performed

by ARES facility staff in line with institutional guidelines. To generate chimeric mice, bone marrow was extracted from the femurs and

tibias of CAG-EGFP mice. 20x105 bone marrow cells were injected intravenous (IV) into WT C57BL/6 irradiated mice (irradiated with

2x 5 Gray doses). Blood from chimeric mice was tested for bone marrow reconstitution before establishment of B16.F10 tumors.

Sample sizes were calculated based on previous experience and a priori power analysis (G* Power). Animals recruited to studies

remained socially housed in individually ventilated cages with cage enrichment and were not involved in prior regulated procedures.

Animals were randomly assigned to experimental groups, and where possible, technicians performing the experiment were blinded

to experimental groups and treatments.

Orthotopic syngeneic tumor models
B16 cells were subcutaneously injected into the shoulders of either 8 week old female immune competent wild-type (WT) C57BL/6

mice, or C57BL/6-Tg(CAG-EGFP)131Osb/LeySopJ mice (Jackson Laboratory). Animals were sacrificed and tissues collected for

analysis at various time points. For breast tumors, 2.5 x105 E0771 cells were injected into the 4th inguinal mammary fat pad of

8 week old female C57BL/6 mice. Tumors were collected after 8 and 16 days of tumor development, whereas the fat pad itself

was collected from non-tumor bearing mice.

Neutralising C3a/C3aR in vivo

B16.F10 shoulder allografts were allowed to develop for 5 days before treatment. Mice received 3 intraperitoneal (IP) injections of

10 mg/ml anti-C3a (HyCult Biotech, clone: 3/11) or IgG2a control (BioXCell, clone 2A3) 5, 7 and 9 days after tumor induction. Animals

were randomized and technicians undertaking procedures were blinded to treatment groups. Animals were sacrificed 6 days (24hs

after the first treatment) and 11 days post tumor induction and tumors isolated. Blood was collected by cardiac puncture and kept in

capped EDTA tubes at RT before processing. Non-invasive tumor measurements were recorded daily and volumes calculated using

the following formula (p/6)(shortest length*longest length)2. Data points from all animals were included unless tumors failed to form

following technical issues with injection of cells. For C3aR antagonism, 100 mg (5% DMSO in PBS) of the small molecule SB290157

(Sigma) or vehicle control, was injected IP at either day 4 and 6 or day 8 and 10 into B16-F10 tumor bearing mice. Blood and tumor

samples were collected 11 days post induction, as previously described.

EdU Incorporation
Tumor and non tumor bearingmice were injected IP with 200 mL pf 500 mg/ml 5-ethynyl-20-deoxyuridine (EdU), at 48 and 24hs prior to

culling. Skin form wt mice, as well as day 5 and day 11 tumors were collected for flow cytometry. Samples were processed and sur-

face markers stained as previously described. Cells were fixed in 4% PFA (15mins) and permeabilised with saponin buffer (15mins).

The Click-iT reaction was performed according to manufacturer’s instructions, using the EdU Click-it Alexa Fluor 488 imaging kit

(Invitrogen), before staining for intracellular targets was performed.

METHOD DETAILS

Tissue Processing
Tumors weremechanically dissociated and digested in 1mg/ml collagenase D (Roche), 1mg/ml collagenase A (Roche) and 0.4mg/ml

DNase (Roche) in PBS, at 37�C for 2hs. Lymph nodes were mechanically dissociated and digested with 1mg/ml collagenase A

(Roche) and 0.4mg/ml DNase (Roche) in PBS, at 37�C. After 30 mins, Collagenase D (Roche) was added (final concentration of

1mg/ml) to lymph node samples and digestion was continued for a further 30 mins. EDTA was added to all samples to neutralise
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collagenase activity (final concentration (5mM) and digested tissues were passed through 70 mm filters (Flacon) ready for staining.

5ml of Red Blood Cell Lysis (RBC) lysis buffer (150mM NH4Cl, 1mM KHCO3, 0.1mM EDTA) was added to blood samples for

5 mins and neutralized with 45ml of PBS.

Isolation of Single Cells
Single cells were isolated from processed tissues using fluorescence-activated cell sorting (FACS). Once processed, samples were

incubated with a fixable fluorescent viability stain (Life Technologies) for 20mins (diluted 1:1000 in PBS) prior to incubation with

conjugated primary antibodies for 30 mins at 4�C. Antibodies were diluted 1:300 in PBS 0.5% BSA. Stained samples were index

sorted, using the BD influx flow cytometer system, Single-cells were sorted into 2 mL of Lysis Buffer (1:20 solution of RNase Inhibitor

(Clontech, cat. no. 2313A) in 0.2% v/v Triton X-100 (Sigma-Aldrich, cat. no. T9284)) in 96 well plates, spun down and immediately

frozen at �80 degrees.

Preparation of cDNA and sequencing
Reverse transcription and cDNA pre-amplification were performed according to the SmartSeq2 protocol (Picelli et al., 2014) to obtain

mRNA libraries from single-cells. Oligo-dT primer, dNTPs (ThermoFisher, cat. no. 10319879) and an ERCC RNA Spike-In Mix

(1:50,000,000 final dilution, Ambion, cat. no. 4456740) were then added. Reverse Transcription and PCR were performed as previ-

ously published (Picelli et al., 2014), using 50U of SMARTScribe Reverse Transcriptase (Clontech, cat. no. 639538). cDNA libraries

were prepared using the Nextera XT DNASample Preparation Kit (Illumina, cat. no. FC-131-1096), according to the protocol supplied

by Fluidigm (PN 100-5950 B1). Single cell libraries were pooled, purified using AMPure XP beads (Beckman Coulter) and sequenced

on an Illumina HiSeq 2500 aiming for an average depth of 1 Million reads/cell (paired-end 100-bp reads).

Flow Cytometry
Following a 20min incubation with a fixable fluorescent viability stain (see Isolation of Single Cells), cells were incubated with primary

antibodies against cell surface markers, for 30mins at 4�C. Primary antibodies were diluted 1:300 in PBS 0.5% BSA according to

STAR Methods. When analyzing immune cells, surface antibodies were diluted in a 50/50 mix of PBS 0.5% BSA and 2.4G2 FC

Blocker (hybridoma supernatant generated in-house). If required, fluorescently labeled streptavidin, diluted 1:300 in PBS 0.5%

BSA, was added for a further 30mins. To stain for intracellular targets, samples were fixed and permeabilized using the FOXP3 per-

meabilisation and fixation kit (eBioscence), for 1h at RT. Fixation and permeabilization was only performed once staining for surface

markers was completed. Once samples were fixed, antibodies were diluted in a perm buffer from the FOXP3 permeabilisation and

fixation kit, prepared according to manufacturer’s instructions. Brefeldin-A (BFA, Biolegend) was used to investigate intracellular

cytokine expression. BFA was added to the tissue digestion mix (1:1000) and samples were digested for 1h 30mins. After processing

to a single cell suspension, samples were further incubated with BFA in media (1:1000 in DMEM 10% FBS) at 37�C for 2hs 30mins.

Once staining was completed, samples were analyzed using the BD LSR-Fortessa system.

Immunofluorescence
Collected tissues were embedded in OCTmedium (VWR) and snap frozen on dry ice. Frozen tissues were sectioned into 10 mmslices

and stored at �80�C. Sections were air-dried and fixed in 50:50 acetone (Fluka): methanol (Fisher), at �20�C for 2mins or 4% para-

formaldehyde (PFA) for 10 minutes at RT. If fixed with PFA, samples were permeabilized with 0.1% Triton for a further 10 minutes.

After blocking for 1h at room temperature (RT) with blocking buffer (10% chicken serum and 2% Bovine Serum Albumin) in PBS,

primary antibodies were applied overnight at 4�C or RT for 3hs. To visualize samples, secondary antibodies (Life Technologies),

conjugated to either Alexa Fluor 488, 594 or 647, or fluorescently labeled streptavidin, were added for 2hs at RT. Samples were incu-

bated with the nuclear stain 4’,6-diamidino-2-phenylindole (DAPI) for 10 mins at 1 mg/ml, before mounting with ProLong Gold (Ther-

moFisher) liquid mountant. Streptavidin and secondary antibodies were diluted 1:300 in blocking buffer and primary antibodies

(STAR Methods) were diluted in blocking buffer (for PDPN, CD31, CD11b biotin and F4/80, 1:100; for CD34 488, C3aR, F4/80 488

and Ly6C APC 1:20; for all other antibodies 1:50). Confocal imaging was performed using the Zeiss LSM 880 microscope and

processed using the Zeiss Blue software. ROIs from 63x tile scans were included to show the presence of stromal components in

sufficient detail.

QUANTIFICATION AND STATISTICAL ANALYSIS

Parameters such as sample size, measures of center, dispersion and precision (mean + SD or SEM) and statistical significance are

reported in text, Figures and Figure Legends. Results were considered statistically significant when p < 0.05, by the appropriate test,

as indicated in the text and Figure Legends.

Single-cell RNA sequencing analysis
The SmartSeq2 data was quantified with Salmon (Patro et al., 2017) (version 0.8.2), using the GENCODEmouse protein-coding tran-

script sequences. Transcript Per Million (TPM) values reported by Salmon were used for the quality control of the samples. In order to

get the endogenous TPM values, we removed the ERCC’s from the expression table and scaled the TPM’s so that they sum to a
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million. Cells with less than 1500 detected genes and for which the total mitochondrial expression exceeded 20% were excluded

from further analysis. Genes that were expressed in less than 3 cells were also removed.

Downstream analysis, such as SNN graph-based clustering, differential expression analysis and visualization were performed

using the Seurat package (Satija et al., 2015) (version 2.3.4) implemented in R. Clusters were identified using the community identi-

fication algorithm as implemented in the Seurat ‘‘FindClusters’’ function. The shared nearest neighbor graph was constructed using

between 10 and 30 principal components as determined by the dataset variability; the resolution parameter to find the resulting

number of clusters was tuned so that it produced a number of clusters large enough to capture most of the biological variability.

Differential expression analysis was performed based on the Wilcoxon rank sum test. Clusters were annotated using canonical

cell type markers. Two clusters of dDC2 in the tumor represented the same cell type and were therefore merged.

Trajectory modeling and pseudotemporal ordering of cells was performed with theMonocle 2 R-package (Qiu et al., 2017) (version

2.8.0). Briefly, the algorithm learns the sequence of expression changes each cell goes through as a part of a dynamics process and

places each cell at its appropriate position in the trajectory. The most highly variable genes were used for ordering the cells. Potential

doublets and contaminating melanocytes and keratinocytes were excluded. We also removed a cluster for which the top markers

were genes associated with dissociation-induced effects. Genes which changed along the identified trajectory were identified by

performing a likelihood ratio test using the function differentialGeneTest in the monocle 2 package.

To further identify subpopulations, we reanalysed the T cells, innate immune cells (myeloid and NK) and the CD31- stromal cells

separately, using the same workflow as described above. To account for the cell cycle heterogeneity in the T cell subsets a cell cycle

score was calculated for each cell and this score was then regressed out. We used the function ‘‘AddModuleScore’’ from Seurat and

the list of G2M associated genes from Scialdone et al. to calculate a cell cycle score for each cell.

The gprofiler R package (Raudvere et al., 2019) was used to find enriched GO terms in KEGG Pathways. All significantly upregu-

lated genes (gSCS adjusted p value < 0.05) for populations were tested, using moderate hierarchical filtering.

T cell receptor (TCR) analysis
The TCR sequences for each single T cell were assembled using TraCeR (Stubbington et al., 2016) which allowed the reconstruction

of the TCRs from scRNA-seq data and their expression abundance (transcripts per million, TPM), as well as identification of the size,

diversity and lineage relation of clonal subpopulations. In total, we detected 77 TCR sequenceswith at least one paired productive ab

or gamma-delta chain. Cells for which more than two recombinants were identified were excluded from further analysis.

Cell cycle analysis
The pair-based prediction method described by Scialdone et al. (Scialdone et al., 2015). and implemented in the R package scran

was used to assign each cell a cell cycle stage. Briefly, using training data, pairs of marker genes are identified such that the expres-

sion of the first gene in the training data is greater than the second in a certain cell cycle stage but less than the second in all other

stages. For each cell then, the method calculates the proportion of all marker pairs where the expression of the first gene is greater

than the second in the test data.

Putative interactions between cell types
To enable a systematic analysis of cell-cell communication, we used CellPhoneDB (Vento-Tormo et al., 2018). CellPhoneDB is a

manual curated repository of ligands, receptors and their interactions, integrated with a statistical framework for inferring cell-cell

communication networks from single cell transcriptome data. For the mouse dataset, we used the ortholog genes.

Briefly, in order to identify the most relevant interactions between cell types, we looked for the cell-type specific interactions

between ligands and receptors. Only receptors and ligands expressed in more than 10% of the cells in the specific cluster were

considered. We performed pairwise comparisons between all cell types. First, we randomly permuted the cluster labels of all cells

1000 times and determined the mean of the average receptor expression level of a cluster and the average ligand expression level of

the interacting cluster. For each receptor-ligand pair in each pairwise comparison between two cell types, this generated a null

distribution. By calculating the proportion of the means which are as or higher than the actual mean, we obtained a p-value for

the likelihood of cell type-specificity of a given receptor-ligand complex. We then prioritized interactions that are highly enriched

between cell types based on the number of significant pairs and manually selected biologically relevant ones. For the multi-subunit

heteromeric complexes, we required that all subunits of the complex are expressed (using a threshold of 10%), and therefore we

used the member of the complex with the minimum average expression to perform the random shuffling.

Mouse skin fibroblasts from healthy mice
Skin samples from two 8-week old female C57BL/6 mice were processed, first by mechanical processing, followed by a 2h incuba-

tion with 0.5% collagenase B (Roche; 11088815001). Cells were then counted and loaded on the 10x Chromium machine. Libraries

were prepared following the Chromium Single Cell 30 v2 Reagent Kit Manual (Zheng et al., 2017). Libraries were sequenced on an

Illumina HiSeq 4000 instrument with 26 bp for read 1 and 98 bp for read 2. Droplet-based sequencing data was aligned, filtered

and quantified using the Cell Ranger Single-Cell Software Suite (version 2.2.0), against the mouse reference genome provided by

Cell Ranger. The data was analyzed using the pipeline described above. Only the clusters identified as fibroblasts (based on expres-

sion of Col1a1, Col1a2) were considered for comparison with the stromal clusters.
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Human skin fibroblasts
scRNA-seq data was downloaded from ArrayExpress: E-MTAB-6831 (Hagai et al., 2018). CD45-negative cells from a digested skin

sample were taken from a human female and processed in a 10X Chromium machine (10X Genomics). Droplet-based sequencing

data was aligned, filtered and quantified using the Cell Ranger Single-Cell Software Suite (version 1.2.0), against the GRCh38 human

reference genome provided byCell Ranger. The datawas analyzed using the pipeline described above. Only the clusters identified as

fibroblasts (based on expression of COL1A1, COL1A2) were considered for comparison with the stromal clusters.

Comparison of human and mouse skin fibroblasts with stromal clusters
To compare the mouse and human skin fibroblasts with the tumor stromal populations, a logistic regression with L2-norm regulari-

zation and a multinomial learning approach as described in La Manno et al. (2016) (implemented by the scikit-learn function

LogisticRegression) was trained on the stromal clusters, using the log-transformed normalized data. The model was used to predict

the probabilities of eachmouse and human skin cell belonging to each one of the stromal clusters (implemented by the predict_proba

function).

Public data analysis
Genes that were differentially expressed between populations in the bulk RNA seq data of sorted fibroblasts from KPC tumors and

normal pancreas were found using R package DESeq2 (Love et al., 2014). The processed human melanoma dataset (Tirosh et al.,

2016) and human head and neck cancer dataset (Puram et al., 2017) was analyzed using the pipeline described above. Clusters

were annotated using canonical cell type markers. Progression free survival analysis on the TCGA data was performed using the sur-

vival R package (Therneau and Grambsch, 2000) and the patients were dichtomised based on the median expression value of C3.

Kaplan-Meier estimator of survival was used to construct the survival curves. Log rank tests were used to compare progression free

survival between patients in different groups.

DATA AND CODE AVAILABILITY

The raw sequencing data for the melanoma model has been deposited in ArrayExpress: E-MTAB-7427 and the count table can be

downloaded from https://www.ebi.ac.uk/gxa/sc/experiments/E-EHCA-2/Results. We have also made this data available for online

browsing with a user-friendly interface at http://www.teichlab.org/data/. The mouse skin data from healthy mice was deposited in

ArrayExpress: E-MTAB-7417. Other data is available from the corresponding author on reasonable request. The human skin fibro-

blast data was downloaded from ArrayExpress: E-MTAB-6831(Hagai et al., 2018). Bulk RNA seq data of sorted fibroblasts from KPC

tumors and normal pancreas was downloaded from GEO: GSE42605. The processed human melanoma dataset (Tirosh et al., 2016)

and human head and neck cancer dataset (Puram et al., 2017) were downloaded from GEO: GSE72056, and GEO: GSE103322. The

TCGA normalized expression data was downloaded using the R package TCGAbiolinks (Colaprico et al., 2016). The clinical data was

downloaded from the cBioPortal (Cerami et al., 2012; Gao et al., 2013).
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