144 research outputs found

    Towards a mechanistic understanding of reciprocal drug-microbiome interactions.

    Get PDF
    Broad-spectrum antibiotics target multiple gram-positive and gram-negative bacteria, and can collaterally damage the gut microbiota. Yet, our knowledge of the extent of damage, the antibiotic activity spectra, and the resistance mechanisms of gut microbes is sparse. This limits our ability to mitigate microbiome-facilitated spread of antibiotic resistance. In addition to antibiotics, non-antibiotic drugs affect the human microbiome, as shown by metagenomics as well as in vitro studies. Microbiome-drug interactions are bidirectional, as microbes can also modulate drugs. Chemical modifications of antibiotics mostly function as antimicrobial resistance mechanisms, while metabolism of non-antibiotics can also change the drugs' pharmacodynamic, pharmacokinetic, and toxic properties. Recent studies have started to unravel the extensive capacity of gut microbes to metabolize drugs, the mechanisms, and the relevance of such events for drug treatment. These findings raise the question whether and to which degree these reciprocal drug-microbiome interactions will differ across individuals, and how to take them into account in drug discovery and precision medicine. This review describes recent developments in the field and discusses future study areas that will benefit from systems biology approaches to better understand the mechanistic role of the human gut microbiota in drug actions

    Proton Motive Force Disruptors Block Bacterial Competence and Horizontal Gene Transfer

    Get PDF
    Streptococcus pneumoniae is a commensal of the human nasopharynx that can also cause severe antibiotic-resistant infections. Antibiotics drive the spread of resistance by inducing S. pneumoniae competence, in which bacteria express the transformation machinery that facilitates uptake of exogenous DNA and horizontal gene transfer (HGT). We performed a high-throughput screen and identified potent inhibitors of S. pneumoniae competence, called COM-blockers. COM-blockers limit competence by inhibiting the proton motive force (PMF), thereby disrupting export of a quorum-sensing peptide that regulates the transformation machinery. Known chemical PMF disruptors and alterations in pH homeostasis similarly inhibit competence. COM-blockers limit transformation of clinical multi-drug-resistant strains and HGT in infected mice. At their active concentrations, COM-blockers do not affect growth, compromise antibiotic activity, or elicit detectable resistance. COM-blockers provide an experimental tool to inhibit competence and other PMF-involved processes and could help reduce the spread of virulence factors and antibiotic resistance in bacteria. VIDEO ABSTRACT.</p

    An Atlas of human kinase regulation

    No full text
    The coordinated regulation of protein kinases is a rapid mechanism that integrates diverse cues and swiftly determines appropriate cellular responses. However, our understanding of cellular decision-making has been limited by the small number of simultaneously monitored phospho- regulatory events. Here, we have estimated changes in activity in 215 human kinases in 399 condi- tions from a compilation of nearly 3 million phosphopeptide quantifications. This atlas identifies commonly regulated kinases as those that are central in the signaling network and defines the logic relationships between kinase pairs. Co-regulation along the conditions predicts kinase-complex and kinase-substrate associations. Additionally, the kinase regulation profile acts as a molecular fingerprint to identify related and opposing signaling states. Using this atlas, we identified essen- tial mediators of stem cell differentiation, modulators of Salmonella infection and new targets of AKT1. This provides a global view of human phosphorylation-based signaling and the necessary context to better understand kinase driven decision-making

    Individuality and temporal stability of the human gut microbiome

    Get PDF
    Introduction: The breakthrough of next generation sequencing-technologies has enabled large-scale studies of natural microbial communities and the 16S rRNA genes have been widely used as a phylogenetic marker to study community structure. However, major limitations of this approach are that neither strain-level resolution nor genomic context of microorganisms can be provided. This information, however, is crucial to answer fundamental questions about the temporal stability and distinctiveness of natural microbial communities.Material and methods: We developed a methodological framework for metagenomic single nucleotide polymorphism (SNP) variation analysis and applied it to publicly available data from 252 human fecal samples from 207 European and North American individuals. We further analyzed samples from 43 healthy subjects that were sampled at least twice over time intervals of up to one year and measured population similarities of dominant gut species.Results: We detected 10.3 million SNPs in 101 species, which nearly amounts to the number identified in more than 1,000 humans.Conclusion: The most striking result was that host-specific strains appear to be retained over long time periods. This indicates that individual-specific strains are not easily exchanged with the environment and furthermore, that an individuals appear to have a unique metagenomic genotype. This, in turn, is linked to implications for human gut physiology, such as the stability of antibiotic resistance potential

    Species-specific activity of antibacterial drug combinations

    Get PDF
    International audienceThe spread of antimicrobial resistance has become a serious public health concern, making once treatable diseases deadly again and undermining breakthrough achievements of modern medicine 1,2. Drug combinations can aid in fighting multi-drug resistant (MDR) bacterial infections, yet, are largely unexplored and rarely used in clinics. To identify general principles for antibacterial drug combinations and understand their potential, we profiled ~3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives in 6 strains from three Gram-negative pathogens, Escherichia coli, Salmonella Typhimurium and Pseudomonas aeruginosa. Despite their phylogenetic relatedness, more than 70% of the detected drug-drug interactions are species-specific and 20% display strain specificity, revealing a large potential for narrow-spectrum therapies. Overall, antagonisms are more common than synergies and occur almost exclusively between drugs targeting different cellular processes, whereas synergies are more conserved and enriched in drugs targeting the same process. We elucidate mechanisms underlying this dichotomy and further use our resource to dissect the interactions of the food additive, vanillin. Finally, we demonstrate that several synergies are effective against MDR clinical isolates in vitro and during Galleria mellonella infections with one reverting resistance to the last-resort antibiotic, colistin

    Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans.

    Get PDF
    Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B6, B9, and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease

    Коло Марусі Чурай

    Get PDF
    In this article Marusya Churay*s (a character famous in story and song) life history is researched. On the basis of real events and historical facts the author tells about people who were related to the life of this personality

    Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans

    Get PDF
    Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B-6, B-9, and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease.Peer reviewe

    Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi-enzyme complexes in Escherichia coli

    Get PDF
    The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases
    corecore