2,270 research outputs found

    Asynchrony of Gambierdiscus spp. abundance and toxicity in the U.S. Virgin Islands: implications for monitoring and management of Ciguatera

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liefer, J. D., Richlen, M. L., Smith, T. B., DeBose, J. L., Xu, Y., Anderson, D. M., & Robertson, A. Asynchrony of Gambierdiscus spp. abundance and toxicity in the U.S. Virgin Islands: implications for monitoring and management of Ciguatera. Toxins, 13(6), (2021): 413, https://doi.org/10.3390/toxins13060413.Ciguatera poisoning (CP) poses a significant threat to ecosystem services and fishery resources in coastal communities. The CP-causative ciguatoxins (CTXs) are produced by benthic dinoflagellates including Gambierdiscus and Fukuyoa spp., and enter reef food webs via grazing on macroalgal substrates. In this study, we report on a 3-year monthly time series in St. Thomas, US Virgin Islands where Gambierdiscus spp. abundance and Caribbean-CTX toxicity in benthic samples were compared to key environmental factors, including temperature, salinity, nutrients, benthic cover, and physical data. We found that peak Gambierdiscus abundance occurred in summer while CTX-specific toxicity peaked in cooler months (February–May) when the mean water temperatures were approximately 26–28 °C. These trends were most evident at deeper offshore sites where macroalgal cover was highest year-round. Other environmental parameters were not correlated with the CTX variability observed over time. The asynchrony between Gambierdiscus spp. abundance and toxicity reflects potential differences in toxin cell quotas among Gambierdiscus species with concomitant variability in their abundances throughout the year. These results have significant implications for monitoring and management of benthic harmful algal blooms and highlights potential seasonal and highly-localized pulses in reef toxin loads that may be transferred to higher trophic levels.This work was funded in part by the National Oceanic and Atmospheric Administration, Ecology and Oceanography of Harmful Algal Blooms Program (ECOHAB publication number 984) through the CiguaHAB project (NA11NOS4780028), and also contributes to CIGUATOX (NA17NOS4780181) granted to coauthors AR, TBS, DMA, and MLR. Additional support was provided by NSF Partnerships in International Research and Education (1743802), and the Greater Caribbean Center for Ciguatera Research (NIH 1P01ES028949-01 and NSF 1841811). Financial support of YX was from the National Natural Science Foundation of China (41976155), the Natural Science Foundation of Guangxi Province (2020GXNSFDA297001)

    Fluorogenic Atom Transfer Radical Polymerization in Aqueous Media as a Strategy for Detection

    Get PDF
    The development of novel approaches to signal amplification in aqueous media could enable new diagnostic platforms for the detection of water-soluble analytes, including biomolecules. This paper describes a fluorogenic polymerization approach to amplify initiator signal by the detection of visible fluorescence upon polymerization in real-time. Fluorogenic monomers were synthesized and co-polymerized by atom transfer radical polymerization (ATRP) in water to reveal increasing polymer fluorescence as a function of both reaction time and initiator concentration. Optimization of the fluorogenic ATRP reaction conditions allowed for the quantitative detection of a small-molecule initiator as a model analyte over a broad linear concentration range (pM to mM). Raising the reaction temperature from 30 C to 60 C facilitated sensitive initiator detection at sub-picomolar concentrations in as little as 1 h of polymerization. This method was then applied to the detection of streptavidin as a model biological analyte by fluorogenic polymerization from a designed biotinylated ATRP initiator. Taken together, these studies represent the first example of a fluorogenic ATRP reaction and establish fluorogenic polymerization as a promising approach for the direct detection of aqueous analytes and biomolecular recognition events

    Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}

    Full text link
    In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR) are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals with various carrier concentrations, from underdope to overdope. Our crystals show the highest T_c (33 K) and the smallest residual resistivity ever reported for Bi-2201 at optimum doping. It is found that the temperature dependence of the Hall angle obeys a power law T^n with n systematically decreasing with increasing doping, which questions the universality of the Fermi-liquid-like T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab} shows a good T-linear behavior. The systematics of the MR indicates an increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure

    Magnetoresistance in High-Tc Superconductors: The Role of Vertex Corrections

    Full text link
    In high-Tc cuprates, the orbital magnetoresistance in plane (MR, Δρ/ρ\Delta\rho/\rho) is anomalously enhanced at lower tempemeratures compared with conventional Fermi liquids, and thus Kohler's rule is strongly violated. Moreover, it should be noted that an intimate relation between the MR and the Hall coefficient (RHR_H), Δρ/ρ(RH/ρ)2\Delta\rho/\rho \propto (R_H/\rho)^2, holds well experimentally, and is called the "modified Kohler's rule". In this letter, we study this long-standing problem in terms of the nearly antiferromagnetic (AF) Fermi liquid. We analyze the exact expression for the MR by including the vertex corrections (VC's) to keep the conservation laws, and find the approximate "scaling relation" Δρ/ρξAF4/ρ2\Delta\rho/\rho \propto \xi_{AF}^4 /\rho^2 (ξAF\xi_{AF} being the AF correlation length.) in the presence of AF fluctuations. The factor ξAF4\xi_{AF}^4, which comes from the VC's for the current, gives the additional temperature dependence. By taking account of the relation RHξAF2R_H \propto \xi_{AF}^2 [Kontani et al., PRB 59 (1999) 14723.], we can naturally explain the modified Kohler's rule. In conclusion, based on the Fermi liquid theory, the famous {\it seemingly} non-Fermi liquid behaviors of the Hall coefficient and the MR in high-Tc cuprates are naturally understood on an equal footing.Comment: 5 pages, 5 figures, to appear in J. Phys. Soc. Jpn. 70 (2001) No.

    LSU rDNA based RFLP assays for the routine identification of Gambierdiscus species

    Get PDF
    © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Harmful Algae 66 (2017): 20-28, doi:10.1016/j.hal.2017.04.009.Gambierdiscus is a genus of benthic dinoflagellates commonly associated with ciguatera fish poisoning (CFP), which is generally found in tropical or sub-tropical regions around the world. Morphologically similar species within the genus can vary in toxicity; however, species identifications are difficult or sometimes impossible using light microscopy. DNA sequencing of ribosomal RNA genes (rDNA) is thus often used to identify and describe Gambierdiscus species and ribotypes, but the expense and time can be prohibitive for routine culture screening and/or large-scale monitoring programs. This study describes a restriction fragment length polymorphism (RFLP) typing method based on analysis of the large subunit ribosomal RNA gene (rDNA) that can successfully identify at least nine of the described Gambierdiscus species and two Fukuyoa species. The software programs DNAMAN 6.0 and Restriction Enzyme Picker were used to identify a set of restriction enzymes (SpeI, HpyCH4IV, and TaqαI) capable of distinguishing most of the known Gambierdiscus species for which DNA sequences were available. This assay was tested using in silico analysis and cultured isolates, and species identifications of isolates assigned by RFLP typing were confirmed by DNA sequencing. To verify the assay and assess intra-specific heterogeneity in RFLP patterns, identifications of 63 Gambierdiscus isolates comprising ten Gambierdiscus species, one ribotype, and two Fukuyoa species were confirmed using RFLP typing, and this method was subsequently employed in the routine identification of isolates collected from the Caribbean Sea. The RFLP assay presented here reduces the time and cost associated with morphological identification via scanning electron microscopy and/or DNA sequencing, and provides a phylogenetically sensitive method for routine Gambierdiscus species assignment.Funding for this study was provided by the U.S. National Oceanic and Atmospheric Administration ECOHAB program (CiguaHAB; Cooperative Agreement NA11NOS4780060, NA11NOS4780028), the China Scholarship Council and Natural Science Foundation of China (No. 41606137, 41606136), and the Guangxi Natural Science Foundation (2015GXNSFCA139003, 2016GXNSFBA380037)

    Understanding the transfer of contemporary temperature signals into lake sediments via paired oxygen isotope ratios in carbonates and diatom silica: problems and potential

    Get PDF
    Although the oxygen isotope composition (δ18O) of calcite (δ18Ocalcite) and, to a lesser extent, diatom silica (δ18Odiatom) are widely used tracers of past hydroclimates (especially temperature and surface water hydrology), the degree to which these two hosts simultaneously acquire their isotope signals in modern lacustrine environments, or how these are altered during initial sedimentation, is poorly understood. Here, we present a unique dataset from a natural limnological laboratory to explore these issues. This study compares oxygen and hydrogen isotope data (δ18O, δ2H) of contemporary lake water samples at ~2-weekly intervals over a 2-year period (2010–12) with matching collections of diatoms (δ18Odiatom) and calcite (δ18Ocalcite) from sediment traps (at 10 m and 25 m) at Rostherne Mere (maximum depth 30 m), a well-monitored, eutrophic, seasonally stratified monomictic lake in the UK. The epilimnion shows a seasonal pattern of rising temperature and summer evaporative enrichment in 18O, and while there is a temperature imprint in both δ18Odiatom and δ18Ocalcite, there is significant inter-annual variability in both of these signals. The interpretation of δ18Odiatom and δ18Ocalcite values is complicated due to in-lake processes (e.g. non-equilibrium calcite precipitation, especially in spring, leading to significant 18Ocalcite depletion), and for δ18Odiatom, by post-mortem, depositional and possibly dissolution or diagenetic effects. For 2010 and 2011 respectively, there is a strong temperature dependence of δ18Ocalcite and δ18Odiatom in fresh trap material, with the fractionation slope for δ18Odiatom of ca. −0.2‰/°C, in agreement with several other studies. The δ18Odiatom data indicate the initiation of rapid post-mortem secondary alteration of fresh diatom silica (within ~6 months), with some trap material undergoing partial maturation in situ. Diatom δ18O of the trap material is also influenced by resuspension of diatom frustules from surface sediments (notably in summer 2011), with the net effect seen as an enrichment of deep-trap 18Odiatom by about +0.7‰ relative to shallow-trap values. Contact with anoxic water and anaerobic bacteria are potentially key to initiating this silica maturation process, as deep-trap samples that were removed prior to anoxia developing do not show enrichment. Dissolution (perhaps enhanced by anaerobic bacterial communities) may also be responsible for changes to δ18Odiatom that lead to increasing, but potentially predictable, error in inferred temperatures using this proxy. High resolution, multi-year monitoring can shed light on the complex dynamics affecting δ18Odiatom and δ18Ocalcite and supports the careful use of sedimentary δ18Odiatom and δ18Ocalcite as containing valuable hydroclimatic signals especially at a multi-annual resolution, although there remain substantial challenges to developing a reliable geothermometer on paired δ18Odiatom and δ18Ocalcite. In particular, δ18Odiatom needs cautious interpretation where silica post-mortem secondary alteration is incomplete and diatom preservation is not perfect, and we recommend dissolution be routinely assessed on diatom samples used for isotopic analyses

    Characterization of a recurrent missense mutation in the forkhead DNA-binding domain of \u3ci\u3eFOXP1\u3c/i\u3e

    Get PDF
    Haploinsufficiency of Forkhead box protein P1 (FOXP1), a highly conserved transcription factor, leads to developmental delay, intellectual disability, autism spectrum disorder, speech delay, and dysmorphic features. Most of the reported FOXP1 mutations occur on the C-terminus of the protein and cluster around to the forkhead domain. All reported FOXP1 pathogenic variants result in abnormal cellular localization and loss of transcriptional repression activity of the protein product. Here we present three patients with the same FOXP1 mutation, c.1574G\u3eA (p.R525Q), that results in the characteristic loss of transcription repression activity. This mutation, however, represents the first reported FOXP1 mutation that does not result in cytoplasmic or nuclear aggregation of the protein but maintains normal nuclear localization

    Using self-definition to predict the influence of procedural justice on organizational, interpersonal, and job/task-oriented citizenship behaviors

    Get PDF
    An integrative self-definition model is proposed to improve our understanding of how procedural justice affects different outcome modalities in organizational behavior. Specifically, it is examined whether the strength of different levels of self-definition (collective, relational, and individual) each uniquely interact with procedural justice to predict organizational, interpersonal, and job/task-oriented citizenship behaviors, respectively. Results from experimental and (both single and multisource) field data consistently revealed stronger procedural justice effects (1) on organizational-oriented citizenship behavior among those who define themselves strongly in terms of organizational characteristics, (2) on interpersonal-oriented citizenship behavior among those who define themselves strongly in terms of their interpersonal relationships, and (3) on job/task-oriented citizenship behavior among those who define themselves weakly in terms of their distinctiveness or uniqueness. We discuss the relevance of these results with respect to how employees can be motivated most effectively in organizational settings
    corecore