33 research outputs found

    An Exploratory Study of Nonsuicidal Self-Injury and Suicidal Behaviors in Adolescent Latinas

    Get PDF
    To date, there is little research to validate empirically differences between nonsuicidal self-injurious behavior (NSSI) and attempted suicide among Latina adolescents. Understanding the characteristics and contextual features of self-harmful behaviors among Latina teens is a critical public health and social justice matter given the disproportionate rates of attempted suicide and anticipated population growth of this vulnerable group. In this article, we draw on an ecodevelopmental model to focus attention on factors in the sociocultural environment that shape suicidal behaviors and NSSIs. Through analysis of qualitative interviews conducted with girls who used NSSI (n ! 18), attempted suicide (n ! 29), used NSSI and attempted suicide (n ! 8,) and had no reported lifetime history of self-harm (n ! 28), we describe the sociocultural factors that shaped psychosocial vulnerabilities and gave rise to decisions to use NSSI or attempt suicide. Our analysis revealed that adolescents who engaged in NSSI perceived their negative feelings as something that could be controlled through self-injurious acts, whereas powerlessness was a theme underlying the emotional states of girls who attempted suicide. When NSSI ceased to function as a mechanism for control, girls came to sudden decisions to attempt suicide. Most teens identified specific, and often multiple, situations that induced intense affective states and shaped decisions to inflict self-harm. Two situational experiences emerged as particularly salient and promising for subsequent studies on self-harmful behaviors among Latina adolescents: transnational stress and bullying. We describe each of these and offer suggestions for future research and practice

    An Exploratory Study of Nonsuicidal Self-Injury and Suicidal Behaviors in Adolescent Latinas

    Get PDF
    To date, there is little research to validate empirically differences between nonsuicidal self-injurious behavior (NSSI) and attempted suicide among Latina adolescents. Understanding the characteristics and contextual features of self-harmful behaviors among Latina teens is a critical public health and social justice matter given the disproportionate rates of attempted suicide and anticipated population growth of this vulnerable group. In this article, we draw on an ecodevelopmental model to focus attention on factors in the sociocultural environment that shape suicidal behaviors and NSSIs. Through analysis of qualitative interviews conducted with girls who used NSSI (n ! 18), attempted suicide (n ! 29), used NSSI and attempted suicide (n ! 8,) and had no reported lifetime history of self-harm (n ! 28), we describe the sociocultural factors that shaped psychosocial vulnerabilities and gave rise to decisions to use NSSI or attempt suicide. Our analysis revealed that adolescents who engaged in NSSI perceived their negative feelings as something that could be controlled through self-injurious acts, whereas powerlessness was a theme underlying the emotional states of girls who attempted suicide. When NSSI ceased to function as a mechanism for control, girls came to sudden decisions to attempt suicide. Most teens identified specific, and often multiple, situations that induced intense affective states and shaped decisions to inflict self-harm. Two situational experiences emerged as particularly salient and promising for subsequent studies on self-harmful behaviors among Latina adolescents: transnational stress and bullying. We describe each of these and offer suggestions for future research and practice

    Health and population effects of rare gene knockouts in adult humans with related parents.

    Get PDF
    Examining complete gene knockouts within a viable organism can inform on gene function. We sequenced the exomes of 3222 British adults of Pakistani heritage with high parental relatedness, discovering 1111 rare-variant homozygous genotypes with predicted loss of function (knockouts) in 781 genes. We observed 13.7% fewer homozygous knockout genotypes than we expected, implying an average load of 1.6 recessive-lethal-equivalent loss-of-function (LOF) variants per adult. When genetic data were linked to the individuals' lifelong health records, we observed no significant relationship between gene knockouts and clinical consultation or prescription rate. In this data set, we identified a healthy PRDM9-knockout mother and performed phased genome sequencing on her, her child, and control individuals. Our results show that meiotic recombination sites are localized away from PRDM9-dependent hotspots. Thus, natural LOF variants inform on essential genetic loci and demonstrate PRDM9 redundancy in humans.The study was funded by the Wellcome Trust (WT102627 and WT098051), Barts Charity (845/1796), Medical Research Council (MR/M009017/1). This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Collaboration for Applied Health Research and Care (CLAHRC) for Yorkshire and Humber. Core support for Born in Bradford is also provided by the Wellcome Trust (WT101597). V.N. was supported by the Wellcome Trust PhD Studentship (WT099769). D.G.M. and K.K. were supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM104371. E.R.M. is funded by NIHR Cambridge Biomedical Research Centre. H.H. is supported by awards to establish the Farr Institute of Health Informatics Research, London, from the Medical Research Council, Arthritis Research UK, British Heart Foundation, Cancer Research UK, Chief Scientist Office, Economic and Social Research Council, Engineering and Physical Sciences Research Council, NIHR, National Institute for Social Care and Health Research, and Wellcome Trust.This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via https://doi.org/10.1126/science.aac862

    Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression

    Get PDF
    Glaucoma, a disease characterized by progressive optic nerve degeneration, can be prevented through timely diagnosis and treatment. We characterize optic nerve photographs of 67,040 UK Biobank participants and use a multitrait genetic model to identify risk loci for glaucoma. A glaucoma polygenic risk score (PRS) enables effective risk stratification in unselected glaucoma cases and modifies penetrance of the MYOC variant encoding p.Gln368Ter, the most common glaucoma-associated myocilin variant. In the unselected glaucoma population, individuals in the top PRS decile reach an absolute risk for glaucoma 10 years earlier than the bottom decile and are at 15-fold increased risk of developing advanced glaucoma (top 10% versus remaining 90%, odds ratio = 4.20). The PRS predicts glaucoma progression in prospectively monitored, early manifest glaucoma cases (P = 0.004) and surgical intervention in advanced disease (P = 3.6 × 10). This glaucoma PRS will facilitate the development of a personalized approach for earlier treatment of high-risk individuals, with less intensive monitoring and treatment being possible for lower-risk groups

    Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts.

    Get PDF
    OBJECTIVES: To develop and validate a genetic tool to predict age of onset of aggressive prostate cancer (PCa) and to guide decisions of who to screen and at what age. DESIGN: Analysis of genotype, PCa status, and age to select single nucleotide polymorphisms (SNPs) associated with diagnosis. These polymorphisms were incorporated into a survival analysis to estimate their effects on age at diagnosis of aggressive PCa (that is, not eligible for surveillance according to National Comprehensive Cancer Network guidelines; any of Gleason score ≄7, stage T3-T4, PSA (prostate specific antigen) concentration ≄10 ng/L, nodal metastasis, distant metastasis). The resulting polygenic hazard score is an assessment of individual genetic risk. The final model was applied to an independent dataset containing genotype and PSA screening data. The hazard score was calculated for these men to test prediction of survival free from PCa. SETTING: Multiple institutions that were members of international PRACTICAL consortium. PARTICIPANTS: All consortium participants of European ancestry with known age, PCa status, and quality assured custom (iCOGS) array genotype data. The development dataset comprised 31 747 men; the validation dataset comprised 6411 men. MAIN OUTCOME MEASURES: Prediction with hazard score of age of onset of aggressive cancer in validation set. RESULTS: In the independent validation set, the hazard score calculated from 54 single nucleotide polymorphisms was a highly significant predictor of age at diagnosis of aggressive cancer (z=11.2, P98th centile) were compared with those with average scores (30th-70th centile), the hazard ratio for aggressive cancer was 2.9 (95% confidence interval 2.4 to 3.4). Inclusion of family history in a combined model did not improve prediction of onset of aggressive PCa (P=0.59), and polygenic hazard score performance remained high when family history was accounted for. Additionally, the positive predictive value of PSA screening for aggressive PCa was increased with increasing polygenic hazard score. CONCLUSIONS: Polygenic hazard scores can be used for personalised genetic risk estimates that can predict for age at onset of aggressive PCa

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Polygenic hazard score to guide screening for aggressive - prostate cancer: development and validation in large scale - cohorts

    Get PDF
    OBJECTIVESTo develop and validate a genetic tool to predict age of onset of aggressive prostate cancer (PCa) and to guide decisions of who to screen and at what age.DESIGNAnalysis of genotype, PCa status, and age to select single nucleotide polymorphisms (SNPs) associated with diagnosis. These polymorphisms were incorporated into a survival analysis to estimate their effects on age at diagnosis of aggressive PCa (that is, not eligible for surveillance according to National Comprehensive Cancer Network guidelines; any of Gleason score >= 7, stage T3-T4, PSA (prostate specific antigen) concentration >= 10 ng/L, nodal metastasis, distant metastasis). The resulting polygenic hazard score is an assessment of individual genetic risk. The final model was applied to an independent dataset containing genotype and PSA screening data. The hazard score was calculated for these men to test prediction of survival free from PCa.SETTINGMultiple institutions that were members of international PRACTICAL consortium.PARTICIPANTSAll consortium participants of European ancestry with known age, PCa status, and quality assured custom (iCOGS) array genotype data. The development dataset comprised 31 747 men; the validation dataset comprised 6411 men.MAIN OUTCOME MEASURESPrediction with hazard score of age of onset of aggressive cancer in validation set.RESULTSIn the independent validation set, the hazard score calculated from 54 single nucleotide polymorphisms was a highly significant predictor of age at diagnosis of aggressive cancer (z= 11.2, P98th centile) were compared with those with average scores (30th-70th centile), the hazard ratio for aggressive cancer was 2.9 (95% confidence interval 2.4 to 3.4). Inclusion of family history in a combined model did not improve prediction of onset of aggressive PCa (P= 0.59), and polygenic hazard score performance remained high when family history was accounted for. Additionally, the positive predictive value of PSA screening for aggressive PCa was increased with increasing polygenic hazard score.CONCLUSIONSPolygenic hazard scores can be used for personalised genetic risk estimates that can predict for age at onset of aggressive PCa

    A genetic risk score to personalize prostate cancer screening, applied to population data.

    Get PDF
    Background: A polygenic hazard score (PHS)—the weighted sum of 54 SNP genotypes—was previously validated for association with clinically significant prostate cancer and for improved prostate cancer screening accuracy. Here, we assess the potential impact of PHS-informed screening. Methods: UK population incidence data (Cancer Research UK) and data from the Cluster Randomized Trial of PSA Testing for Prostate Cancer were combined to estimate age-specific clinically significant prostate cancer incidence (Gleason≄7, stage T3-T4, PSA ≄10, or nodal/distant metastases). Using hazard ratios estimated from the ProtecT prostate cancer trial, age-specific incidence rates were calculated for various PHS risk percentiles. Risk-equivalent age—when someone with a given PHS percentile has prostate cancer risk equivalent to an average 50-year-old man (50-years-standard risk)—was derived from PHS and incidence data. Positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was calculated using PHS-adjusted age groups. Results: The expected age at diagnosis of clinically significant prostate cancer differs by 19 years between the 1st and 99th PHS percentiles: men with PHS in the 1st and 99th percentiles reach the 50-years-standard risk level at ages 60 and 41, respectively. PPV of PSA was higher for men with higher PHS-adjusted age. Conclusions: PHS provides individualized estimates of risk-equivalent age for clinically significant prostate cancer. Screening initiation could be adjusted by a man’s PHS. Impact: Personalized genetic risk assessments could inform prostate cancer screening decisions

    Polygenic hazard score is associated with prostate cancer in multi-ethnic populations

    Get PDF
    Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any and aggressive (Gleason score >= 7, stage T3-T4, PSA >= 10ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n=71,856), Asian (n=2,382), and African (n=6,253) genetic ancestries (p<10(-180)). Comparing the 80(th)/20(th) PHS2 percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS2 risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset. A polygenic hazard score (PHS1) improves prostate cancer screening accuracy in European patients. Here, the authors test the performance of a version compatible with OncoArray genotypes (PHS2) in a multi-ethnic dataset and find that it risk-stratifies men for any, aggressive, and fatal prostate cancer
    corecore