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Abstract 

Background: A polygenic hazard score (PHS)—the weighted sum of 54 SNP 

genotypes—was previously validated for association with clinically significant prostate cancer 

and for improved prostate cancer screening accuracy. Here, we assess the potential impact of 

PHS-informed screening.  

Methods: UK population incidence data (Cancer Research UK) and data from the Cluster 

Randomized Trial of PSA Testing for Prostate Cancer were combined to estimate age-specific 

clinically significant prostate cancer incidence (Gleason≥7, stage T3-T4, PSA ≥10, or 

nodal/distant metastases). Using hazard ratios estimated from the ProtecT prostate cancer trial, 

age-specific incidence rates were calculated for various PHS risk percentiles. Risk-equivalent 

age—when someone with a given PHS percentile has prostate cancer risk equivalent to an 

average 50-year-old man (50-years-standard risk)—was derived from PHS and incidence data. 

Positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was 

calculated using PHS-adjusted age groups. 

Results: The expected age at diagnosis of clinically significant prostate cancer differs by 

19 years between the 1st and 99th PHS percentiles: men with PHS in the 1st and 99th percentiles 

reach the 50-years-standard risk level at ages 60 and 41, respectively. PPV of PSA was higher 

for men with higher PHS-adjusted age. 

 Conclusions: PHS provides individualized estimates of risk-equivalent age for clinically 

significant prostate cancer. Screening initiation could be adjusted by a man’s PHS. 

 Impact: Personalized genetic risk assessments could inform prostate cancer screening 

decisions.  
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Introduction 

Prostate cancer is the second-most-common malignancy in men worldwide with nearly 

1.3 million cases diagnosed globally in 20181. It was the third leading cause of European male 

cancer mortality in 2018, following mortality from lung and colorectal cancers2. Prostate cancer 

screening with prostate-specific antigen (PSA) testing can reduce mortality3, but universal 

screening may cause overdetection of cancers that would never become clinically apparent in a 

man’s life-time and overtreatment of indolent disease. Guidelines recommend that individual 

men participate in informed decision making about screening, taking into account factors such as 

their age, race/ethnicity, family history, and preferences4–6.  

Assessment of a man’s genetic risk of developing prostate cancer has promise for guiding 

individualized screening decisions7,8. We previously developed and validated a polygenic hazard 

score (PHS)—a weighted sum of 54 single-nucleotide polymorphism (SNP) genotypes—as 

significantly associated with age at diagnosis of clinically significant prostate cancer, defined as 

cases where any of the following applied: Gleason score ≥7, clinical stage T3-T4, PSA ≥10, or 

where there were nodal or distant metastases9. Risk stratification by the PHS also improved the 

screening performance of PSA testing; the positive predictive value of PSA testing for clinically 

significant prostate cancer increased as PHS increased9. 

Here, we apply the prostate cancer PHS to population data to assess its potential impact 

on individualized screening. Specifically, we combine genetic risk, measured by PHS, and 

known population incidence rates to estimate a risk-equivalent age: e.g., the age at which a man 

with a given PHS will have the same risk of clinically significant prostate cancer as a typical 

man at age 50 years. Such genetic risk estimates can guide individualized decisions about 

whether—and at what age—a man might benefit from prostate cancer screening.  
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Methods 

Polygenic hazard score (PHS) 

 Full methodologic details of the development and validation of the prostate cancer PHS 

have been described previously9. Briefly, the PHS was developed using PRACTICAL 

consortium clinical and genetic data from 31,747 men of European ancestry as a continuous 

survival analysis model10 and found to be associated with age at prostate cancer diagnosis9. 

Validation testing was  performed in an independent, separate dataset consisting of 6,411 men 

from the United Kingdom (UK) ProtecT study11,12. PHS was calculated as the vector product of a 

patient’s genotype (Xi) for n selected SNPs and the corresponding parameter estimates (i) from 

a Cox proportional hazards regression (equation 1): 

   PHS = ∑ 𝑋𝑖𝑖𝑛
𝑖        (1) 

The 54 SNPs included in the model, and their parameter estimates, have been published9 and are 

also shown in Supplemental eTable 1.  

 

Population age-specific incidence  

 Age-specific prostate cancer incidence data were obtained for men aged 40-70 years from 

the United Kingdom, 2013-2015 (Cancer Research UK)13. Men may be less likely to be screened 

outside this age range3,14. The log of the prostate cancer incidence data were fit using linear 

regression to develop a continuous model of age-specific prostate cancer incidence in the UK 

(Iall).  

 The UK age-specific proportion of incidence classified as clinically significant prostate 

cancer was estimated using data from the Cluster Randomized Trial of PSA Testing for Prostate 
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Cancer (CAP). The CAP trial evaluated the impact of a single, low-intensity PSA screening 

intervention on prostate cancer-specific mortality in the UK15. CAP was linked to the ProtecT 

study, which included men aged 50-69 at randomization15; ProtecT compared management 

options including surgery, radiotherapy, and active surveillance in patients with PSA-detected 

prostate cancer12. The clinical and demographic features of the CAP and ProtecT studies have 

been previously described12,15. Clinically significant prostate cancer was defined as cases often 

ineligible for active surveillance (consistent with the definition used in the PHS development). 

These are cases with Gleason score ≥7, clinical stage T3-T4, PSA ≥10, or with nodal/distant 

metastases9,16,17. Men in the intervention arm of the CAP trial who were diagnosed with any 

prostate cancer were divided into 5-year age intervals at prostate cancer detection (n=8,054)15. 

The proportion of clinically significant disease in each age interval was calculated as the number 

of clinically significant prostate cancer diagnoses, divided by the total number of prostate cancer 

diagnoses in the CAP cohort for whom PSA and clinical stage information were available 

(n=6,388)15. The total (all ages) proportion of clinically significant prostate cancer was similarly 

calculated from CAP data. The age-specific prostate cancer incidence curve, Iall, was multiplied, 

within each 5-year age range, by the corresponding age-specific proportion of CAP clinically 

significant prostate cancer diagnoses, to yield a continuous estimate of age-specific, clinically 

significant prostate cancer incidence (Iclinically significant). A similar calculation was done to estimate 

age-specific, more aggressive prostate cancer incidence (using a stricter definition of clinically 

significant disease that corresponds to clinical high risk or above by NCCN guidelines: clinical 

stage T3-T4, PSA>20, Gleason score ≥8, or with nodal/distant metastases9,16,17) as Imore-aggressive. 

Finally, clinically insignificant prostate cancer incidence (Iclinically insignificant) was estimated as the 

difference between Iall and Iclinically significant.    
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Impact of genetic risk on clinically significant prostate cancer incidence 

 Men in the ProtecT study with genotype data (n=6,411) were categorized by their PHS 

percentile ranges (0-2, 2-10, 10-30, 30-70, 70-90, 90-98, and 98-100) to correspond to 

percentiles of interest (1, 5, 20, 50, 80, 95, and 99, respectively). These percentiles refer to the 

distribution of PHS in the ProtecT dataset within controls aged <70. Incidence rates of clinically 

significant prostate cancer were calculated for each percentile range (Ipercentile) using Cox 

proportional hazards regression (parameter estimate, ß), following the methods published 

previously9. The reference for each hazard ratio (HR) was taken as the mean PHS among those 

men with approximately 50th percentile for genetic risk (i.e., 30th-70th percentile of PHS, called 

PHSmedian), and this median group was assumed to have an incidence of clinically significant 

disease matching the overall population (Iclinically significant, calculated above). Incidence rates for 

the other percentiles of interest (Ipercentile) were then calculated by determining the mean PHS 

among men in the corresponding percentile range (called PHSpercentile) and applying equation 2: 

   Ipercentile(age) = Iclinically significant(age)eß(PHSpercentile-PHSmedian)  

 (2) 

 As described in the original validation of this PHS model for prostate cancer9, PHS 

calculated in the ProtecT dataset will be biased by the disproportionately large number of cases 

included, relative to incidence in the general population. Leveraging the cohort design of the 

ProtecT study11, we therefore applied a correction for this bias, using previously published 

methods18 and the R ‘survival’ package (R version 3.2.2)19,20. The corrected PHS values were 

used to update PHSpercentile and PHSmedian used in equation 2. Then, 95% confidence intervals for 

the HRs for each percentile were determined by bootstrapping 1,000 random samples from the 
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ProtecT dataset, while maintaining the same number of cases and controls from the original 

dataset. The Ipercentile, predicted partial hazard (product of PHSpercentile and the estimated ß), and 

standard errors (to account for sample weights) were calculated for each bootstrap sample.  

 Percentile-specific incidence estimates (Ipercentile) were visualized as the corresponding 

cumulative incidence curves for clinically significant prostate cancer diagnosis for men aged 50-

70 years. Analogous HRs and incidence curves were similarly calculated for the annualized 

incidence rates of clinically insignificant and more aggressive prostate cancer. 

An individualized PHS to aid prostate cancer screening decisions in the clinic might be 

facilitated by a readily interpretable translation of PHS to terms familiar to men and their 

physicians. The PHS was therefore combined with UK clinically significant prostate cancer 

incidence data to give a risk-equivalent age: when a man with a given PHS percentile would 

have the same risk of clinically significant prostate cancer as, say, that of a typical man at 50 

years old (50-years-standard risk). We defined Age as the difference between age 50 and the 

age when prostate cancer risk matches that of a typical 50-year-old man. 95% confidence 

intervals for the age when a man reaches 50-year-standard risk and Age were determined using 

the HRs calculated from the 1,000 bootstrapped samples from ProtecT, described above. 

Finally, we considered the common clinical scenario of a man presenting to his primary 

care physician to discuss prostate cancer screening. To illustrate how PHS might influence this 

discussion, we identified the subset of men in the ProtecT validation dataset who were around 

the median age of 60 years (55-64), to represent a typical patient. From this subset, we created 

three groups: those whose prostate cancer risk-equivalent age remained within the selected range 

(ages 55-64), those whose risk-equivalent age was <55, and those whose risk-equivalent age was 

≥65. We then calculated the positive predictive value (PPV) and standard error [SE] of the mean 



 

 
12 

of PSA testing for development of clinically significant prostate cancer in these three PHS-

adjusted (prostate cancer risk-equivalent age) groups using methods described previously9. This 

was done by taking 1,000 random samples (with replacement) of the subjects with elevated PSA 

(≥3.0 ng/mL) in the dataset, stratified to ensure each random sample matched the distribution of 

controls and cases reported for men with elevated PSA in ProtecT11,12. Stratification was also 

used to ensure the proportion of clinically significant cases matched the proportion reported in 

CAP for the age range of 55-6411, such that the PPV for the sample exactly matched the expected 

value for the linked ProtecT and CAP trials, but the distribution of genetic risk (PHS) was varied 

at random within each disease status group (control, clinically significant, clinically 

insignificant). A similar calculation for PPV of PSA testing for development of any prostate 

cancer was performed for the three PHS-adjusted age groups.  

 

Results 

 Linear regression yielded a model of prostate cancer age-specific incidence rates 

(equation 3, R2=0.96 and p=0.001) that was highly consistent with empirical data reported by 

Cancer Research UK (Figure 1).   

Iall = 0.004e0.203(age-40)       (3) 

In the CAP study15, the overall proportion of prostate cancer incidence classified as 

clinically significant disease was 72.3%. The proportions of age-specific, clinically significant 

disease increased with age: 48.0%, 55.9%, 63.5%, and 79.7% of men aged 50-54, 55-59, 60-64, 

and 65-69, respectively, were diagnosed with clinically significant prostate cancer. Combining 

men aged 55-64, the proportion of age-specific, clinically significant prostate cancer was 61.1%. 
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Cumulative incidence estimates of clinically significant prostate cancer are shown in 

Figure 2 for various levels of genetic risk, as indicated by PHS percentile, showing a difference 

in age at diagnosis related to PHS strata. Supplemental eFigures 1 and 2 show analogous results 

for the incidence curves of clinically insignificant and more aggressive prostate cancer, 

respectively. Table 1 shows risk-equivalent age for each PHS percentile. The expected age at 

clinically significant prostate cancer diagnosis differs by 19 years between the 1st and 99th PHS 

percentiles. Specifically, a man with a PHS in the 99th percentile reached a prostate cancer 

detection risk equivalent to the 50-years standard at an age of 41 years. Conversely, a man with a 

PHS in the 1st percentile would not reach the 50-years-standard risk level until age 60 years. 

Qualitatively, the curves for clinically significant (Figure 2), clinically insignificant (eFigure 1), 

and more aggressive (eFigure 2) prostate cancer maintain consistent horizontal shifts relative to 

curves for other PHS percentiles over the age range studied. Quantitatively, this was confirmed 

by Age, which remained the same for each PHS percentile across a true age range of 40-70. 

Thus, Age was taken to be approximately constant for each PHS percentile and is reported in 

Table 1. 

Figure 3 shows the PPV of PSA testing for clinically significant prostate cancer was 0.21 

(SE: 0.01) for men approximately 60 years old (data derived from a total of 1,395 ProtecT men 

aged 55-64: 283 with clinically significant prostate cancer, 127 with clinically insignificant 

prostate cancer, and 575 controls with a PSA≥3.0 ng/mL). PPV was lower for those with a 

prostate cancer risk-equivalent age <55 years (0.12, SE: 0.04) and higher for those with prostate 

cancer risk-equivalent age ≥65 years (0.40, SE: 0.03).  

The PPVs of PSA testing for any prostate cancer were 0.18 (SE: 0.05), 0.37 (SE: 0.01), 

and 0.61 (SE: 0.03) in men with a prostate cancer risk-equivalent age <55 years, between 55-64 
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years, and ≥65 years, respectively. These PPVs, in combination with the PPVs of PSA for 

clinically significant prostate cancer, indicate that in the older prostate cancer-risk equivalent age 

group (≥65 years), 40% of positive PSA tests are from clinically significant disease, 21% are 

from clinically insignificant disease, and 39% are false positives. The false positive rates for men 

with a prostate cancer risk-equivalent age <55 years and between 55-64 years are 82% and 63%, 

respectively. 

 

 

Discussion 

 We applied the PHS to population incidence data to estimate age-specific risk of 

clinically significant prostate cancer. The resulting age-specific incidence rates (displayed as 

incidence curves in Figure 2) demonstrate clinically meaningful differences across various 

levels of genetic risk, as estimated by PHS. By combining these population curves with an 

individual’s genetic risk and true age, we demonstrate calculation of a risk-equivalent age at 

diagnosis of clinically significant prostate cancer. This age relates a man’s current prostate 

cancer risk to that of the age-specific population average. The incidence curves for clinically 

significant prostate cancer are modulated by 19 years between the 1st and 99th percentiles of 

PHS. Moreover, the PPV of PSA testing in three PHS-adjusted (prostate cancer risk-equivalent 

age) groups demonstrated that PPV is significantly higher in men with higher risk-equivalent 

ages of prostate cancer diagnosis. These results have important implications for clinicians 

considering discussions of whether—and when—to initiate prostate cancer screening in an 

asymptomatic man.  

Prostate cancer can cause considerable mortality and morbidity but is curable if detected 

early. Determination of age of clinically significant disease diagnosis is thus highly relevant. 
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Data from the CAP study shown here confirm prior findings of increasing risk of clinically 

significant prostate cancer as men age21–24. The proportion of new prostate cancer diagnoses 

classified as clinically significant in CAP is higher than some older studies that were limited to 

men with low PSA and normal digital rectal exam25–27, while another modern population study 

shows similar or higher proportions with clinically significant disease21. Taken together, these 

results suggest that screening delayed to an older age will yield a higher incidence of clinically 

significant disease. 

The primary screening tool, PSA testing, is associated with a small absolute decreased 

risk of death from prostate cancer3, but carries a risk of overdetection and harm from 

overtreatment in men who would never have experienced clinical manifestations of their prostate 

cancer28. Thus, universal screening comes at a high cost—both in burden on healthcare systems 

and in the sequelae arising from elevated PSA in men with indolent disease: unnecessary biopsy 

procedures, overdetection, and treatment-related morbidities4,5. Conversely, there are some men 

who will develop clinically significant prostate cancer and would benefit from screening, 

possibly even at a relatively young age. Screening guidelines recommend individualized 

decision-making, but the available quantitative or objective data to guide these decisions are 

insufficient. For instance, family history provides some guidance, but, genetic risk has been 

shown to be more strongly associated with age of clinically significant prostate cancer diagnosis 

than patient-provided family history9,29.  

PHS, in conjunction with other informative factors such as family history, may help 

identify men who may develop the highest-risk cancers12. Incorporating a risk-adjusted age in an 

electronic medical record could reduce burden for general practitioners. The risk-adjusted age 

can be based on whatever threshold of risk for clinically significant prostate cancer is considered 
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optimal. Here, we have used the typical risk at age 50. Waiting until the man whose risk-adjusted 

screening age reached 60 would be much more likely to avoid overdiagnosis and overtreatment 

than to miss an clinically significant prostate cancer. This is supported by the clinically 

significant-specific incidence rates reported here for CAP in the UK and also by recently 

reported absolute age-specific incidence rates in Norway21. One way a risk-stratified approach 

addresses overdetection is by providing a quantifiable, objective, and accurate rationale to not 

screen many men until they reach sufficient risk (in which time, their competing risks also have a 

chance to manifest; these could also inform screening and management decisions, especially if 

they affect life expectancy). The concern for overtreatment is also a critical consideration. As 

demonstrated in the ProtecT study, lower-risk disease does not need to be treated aggressively at 

diagnosis and can be monitored with active surveillance and routine PSA checks12. Additionally, 

other major trials have demonstrated that the risks of biopsy can be mitigated by using 

multiparametric prostate magnetic resonance imaging30–32. These important mitigating factors are 

not directly related to polygenic risk, but they do decrease the risks associated with a prostate 

cancer screening program. 

The stratification of men based on their genetic risk is of particular interest in the primary 

care setting, where the majority of prostate cancer screening discussions take place. Shared 

decision-making between patient and physician has long been recommended in discussions of 

prostate cancer screening5,33, and physicians are tasked with determining an individual’s risk 

based on factors such as his family history and ethnicity. However, physicians demonstrate 

different attitudes towards screening, with some screening all men proactively to avoid 

underdiagnoses, some screening only those men who request it, and some who attempt to weigh 

the costs and benefits of PSA screening on a case-by-case basis34,35. General practitioners, who 
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are already limited by time constraints and their patients’ other health issues, must carefully 

discuss the complex risks and benefits of PSA screening with their patients36. However, 

efficiently identifying men at higher risk of clinically significant disease is important because 

detection of prostate cancer at an early stage allows for definitive treatment to prevent cancer 

progression or metastases12.  

Quantitative risk stratification could guide physicians in their screening conversations 

with patients by providing an objective risk-equivalent age for the development of clinically 

significant disease. This allows for simpler and more standardized informed decision-making 

regarding whether an individual man might benefit from prostate cancer screening. For example, 

physicians who normally initiate screening discussions at some age (e.g., 50-55) could shift the 

timing according to the prostate cancer risk-equivalent age. Some men might need to begin 

prostate cancer screening at a younger age to detect early-onset clinically significant disease. The 

PHS has previously demonstrated high PPV of PSA testing for clinically significant prostate 

cancer in men with progressively higher scores9.  

The potential utility of prostate cancer risk-equivalent age in the clinic is additionally 

demonstrated by its impact on PPV of PSA testing for clinically significant prostate cancer. 

Suppose a 60-year old man presents to his physician to inquire about prostate cancer screening. 

If this man has a prostate cancer risk-equivalent age close to his true age (55-64), the PPV of a 

PSA test (for prediction of clinically significant prostate cancer) for him is approximately 24%. 

If his risk-equivalent age is <55, the PPV decreases to 13%, and he might be reassured in 

foregoing PSA testing. Postponing—or even forgoing—screening in men with low PHS 

percentiles to when they reach their risk-equivalent age could decrease the harms associated with 

screening, or early detection and treatment of prostate cancer4,5. Other men may choose to delay 
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the initiation of PSA testing until they are older and have increased risk. Conversely, if this same 

man has a risk-equivalent age ≥65, the PPV of PSA testing increases substantially to 45%, 

implying that screening may be more informative for him. Of note, the increase in PPV in this 

illustration exceeds that of the reported effect of carrying a mutation in BRCA1 or BRCA237.   

Cost-effectiveness is another concern regarding prostate cancer screening. Use of PHS, a 

one-time test valid for a man’s entire life, can improve screening efficiency while reducing 

overall costs. The genotyping chip assay requires only a saliva sample and can be run for costs 

similar to those for single-gene testing (e.g. the BRCA mutation). Genotyping also informs 

genetic risks for other diseases, possibly allowing multiple tests to be run on the same genotype 

results38,39. PSA screening (and subsequent prostate biopsy) could be offered only to those men 

at higher risk of clinically significant disease. PHS might increase the efficiency of any prostate 

cancer screening program by incorporating knowledge that there are some men with higher 

baseline genetic risks of developing clinically significant prostate cancer, even at a younger age, 

while others have a low baseline genetic risk.  

Limitations of this work include that the PHS did not incorporate genotypic data from 

men of non-European ancestry during its development9, a reflection of the available data, which 

may affect the potential use of the PHS for screening decision-making in men from other ethnic 

groups. This is noteworthy, as disparities in prostate cancer incidence and survival show that in 

the USA, men with African ancestry are more likely to develop prostate cancer and to die from 

their disease40. Our group and others are studying the application of genetic scores to non-

European ancestry groups. Additionally, we used incidence data from a single country (the UK) 

with relatively low rates of screening. While the epidemiological data used in this work are of 

high quality and draw from the same UK population as was previously used for the validation of 
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the PHS model9, further work should evaluate the PHS in other populations. Finally, there are 

now over 140 SNPs reported to have associations with prostate cancer, identified using a meta-

analysis that included ProtecT data41, but not all of these SNPs are represented on the custom 

array used to develop the original PHS. Furthermore, the PHS model was validated using 

independent data from ProtecT; the inclusion of those other SNPs associated with prostate cancer 

would have introduced circularity into the validation. Adding more SNPs to further improve the 

model is an area of active investigation. If we, or others, succeed in developing a further 

optimized PHS, we expect the range of Age to expand.  

 We conclude that clinically meaningful risk stratification can be achieved through 

application of a PHS that is associated with age at clinically significant prostate cancer diagnosis 

to UK population data. PHS can also be used to calculate estimates of risk-equivalent age for the 

development of clinically significant prostate cancer for individual men. The PPV of PSA was 

higher for men with higher PHS-adjusted prostate cancer-equivalent ages. Assessing 

personalized genetic risk via PHS could assist patients and physicians, alike, with the important 

decision of whether, and when, to initiate prostate cancer screening. 
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Table 1. Risk-equivalent age for clinically significant prostate cancer§, by polygenic hazard 

score (PHS) percentile. 

 

PHS 

percentile 

Age when man reaches 

50-year-standard risk 

[95% CI] 

Age  

[95% CI] 

1 60 [59, 62]            -10 [-11, -8] 

5 56 [54, 58]             -6  [-8, -4] 

20 53 [51, 55]             -3  [-5, -1] 

50 50 [48, 52]              0  [-2, 2] 

80 47 [45, 48]              3  [1, 4] 

95 44 [43, 46]              6  [5, 8] 

99 41 [39, 43]              9  [7, 11] 
 

§ Clinically significant prostate cancer was defined as Gleason score ≥7, clinical stage T3-T4, 

PSA ≥10, or with nodal/distant metastases. 
 Risk of typical 50-year-old defined as overall population incidence at age 50. 
 Age = difference between 50 and the age when risk is that of a typical 50-year-old man. 
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Figure Legends 

Figure 1. Annual incidence of prostate cancer in the United Kingdom, 2013-2015. Dots 

represent the raw, age-specific incidence rates of each age range, per 100,000 males. The black 

line represents the results of linear regression for an exponential curve to give a continuous 

model of age-specific incidence in the United Kingdom, R2=0.96, p=0.001. 

 

 

Figure 2. Incidence of clinically significant prostate cancer, as derived from application of 

polygenic hazard score (PHS) hazard ratios and population data from the United Kingdom. The 

overall population incidence is taken as the median risk (50th percentile); this accounts for age-

specific proportions of prostate cancer that were clinically significant in the CAP trial15. Hazard 

ratios were calculated within ProtecT data for various levels of genetic risk ranges (0-2, 2-10, 10-

30, 30-70, 70-90, 90-98, and 98-100) to correspond to percentiles of interest (1, 5, 20, 50, 80, 95, 

and 99, respectively), and used to adjust the median incidence curve. Blue lines represent genetic 

risk lower than the median while red lines represent genetic risk higher than the median. 

 

 

Figure 3. Application of prostate cancer risk-equivalent age to the clinical scenario of whether to 

screen a 60-year-old man (median age from ProtecT). The risk-equivalent age is the patient’s 

true age adjusted by PHS level. This plot shows results for all men from ProtecT aged 

approximately 60 years old (range: 55-64), grouped by their calculated prostate cancer risk-

equivalent age: <55, 55-64, or ≥65. The positive predictive value (PPV) of PSA testing for 

clinically significant prostate cancer and the corresponding standard errors of the mean of PSA 

testing are shown for each of these 3 groups.  
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Supplemental Methods and Results 

 

eTable 1. SNP identifier, chromosome, effect allele, reference allele, and position (based on 

version 37) and beta (model weight) for the 54 SNPs used in the polygenic hazard score (PHS) 

calculation*.  

 

SNP ID PHS beta Chromosome Position Effect Reference 

rs6545977 -0.066 2 63301164 C G 

rs1010 0.05 2 85808982 G A 

rs16860513 0.198 2 173342367 A G 

c3_pos87230612 -0.115 3 87147922 T A 

rs6788616 -0.04 3 87205079 A G 

rs4857841 0.029 3 128046643 T A 

c3_pos171557211 0.073 3 170074517 C G 

rs6853490 -0.054 4 95544718 G A 

rs2136486 0.024 4 95571976 G A 

rs7679673  § -0.066 4 106061534 A G 

rs7725218 -0.07 5 1282414 T A 

rs2736108 0.05 5 1297488 A G 

rs10866528 -0.045 5 1891821 A T 

rs10051795 -1.501 5 100648792 C A 

rs17596465 0.114 6 93471818 G A 

rs3910736 -0.068 6 153412476 G A 

rs651164 -0.05 6 160581374 A G 

rs7769879 0.054 6 160865645 G A 

rs6965016 -0.052 7 97807882 G A 

rs13265330 -0.06 8 23525543 A C 

rs9297746 0.055 8 127909361 A G 

rs28556804 0.077 8 128014315 G A 

c8_pos128146328 0.174 8 128077146 A G 

rs7841060 -0.082 8 128096477 C A 

rs13252265 -0.055 8 128203859 A C 

c8_pos128389706 0.066 8 128320524 C G 

rs6983267  § -0.095 8 128413305 A G 

rs9297759 0.073 8 128519171 A G 

rs12549761 0.054 8 128540776 A G 

c10_pos8072007 -1.53 10 8032001 A G 

rs10993994  § 0.1 10 51549496 A T 

c11_pos2181240 0.068 11 2224664 G C 

rs12275055 -0.076 11 68981359 C A 

rs7929962 0.048 11 68985583 G A 



rs11568818  § 0.041 11 102401661 A G 

rs10875943  § -0.041 12 49676010 T A 

rs4919763 -0.05 12 53279623 A C 

rs3861106 -0.914 13 63485756 A G 

rs4643253 0.052 14 69106108 G C 

rs684232  § -0.039 17 618965 C G 

rs718961 -0.075 17 36077099 C G 

rs11651052 -0.093 17 36102381 A G 

c17_pos44175675 0.142 17 46820676 G C 

rs9889335 0.077 17 69115146 G A 

rs11672691  § -0.059 19 41985587 A G 

rs17632542 0.14 19 51361757 G A 

rs4809311 0.049 20 62233764 A G 

c22_pos41831564 0.084 22 43501620 A G 

rs747745 0.044 22 43503547 A G 

rs4907775 0.131 23 51263200 G A 

rs5945631 -0.192 23 51268884 A G 

rs7888856 0.049 23 66751555 G A 

rs11795627 -0.042 23 69957441 A G 

rs232964 1.031 23 76136958 A G 

 

 
* Comparing the 54 SNPs included in PHS and the 147 SNPs identified in a recent meta-analysis 

of men with European ancestry1, there were 7 PHS SNPs that were exact matches (§) with one of 

the 147 meta-analysis SNPs. 

 

 

  



eFigure 1. Incidence of prostate cancer, stratified by clinically significant and clinically 

insignificant, as derived from application of polygenic hazard score (PHS) hazard ratios and 

population data from the United Kingdom. The overall population incidence is taken as the 

median risk (50th percentile); this accounts for age-specific proportions of prostate cancer that 

were clinically significant in the CAP trial2. Hazard ratios were calculated within ProtecT data 

for various levels of genetic risk ranges (0-2, 2-10, 10-30, 30-70, 70-90, 90-98, and 98-100) to 

correspond to percentiles of interest (1, 5, 20, 50, 80, 95, and 99, respectively), and used to adjust 

the median incidence curve. Blue lines represent genetic risk lower than the median while red 

lines represent genetic risk higher than the median. Solid lines represent clinically significant 

prostate cancer, while dashed lines represent clinically insignificant cases. The sum of clinically 

significant and clinically insignificant incidence would estimate the incidence of any prostate 

cancer. 

 

 

 

 
  



 

eFigure 2. Incidence of more aggressive prostate cancer, as derived from application of 

polygenic hazard score (PHS) hazard ratios and population data from the United Kingdom. The 

stricter definition for more aggressive disease corresponds to clinical high risk or above by 

NCCN guidelines—i.e., any of: clinical stage T3-T4, PSA>20, Gleason score ≥8, or 

nodal/distant metastases3.The overall population incidence is taken as the median risk (50th 

percentile); this accounts for age-specific proportions of more aggressive prostate cancer 

reported in the CAP trial2. Hazard ratios were calculated within ProtecT data for various levels of 

genetic risk ranges (0-2, 2-10, 10-30, 30-70, 70-90, 90-98, and 98-100) to correspond to 

percentiles of interest (1, 5, 20, 50, 80, 95, and 99, respectively), and used to adjust the median 

incidence curve. Blue lines represent genetic risk lower than the median while red lines represent 

genetic risk higher than the median. 
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