469 research outputs found
A Diagram Is Worth A Dozen Images
Diagrams are common tools for representing complex concepts, relationships
and events, often when it would be difficult to portray the same information
with natural images. Understanding natural images has been extensively studied
in computer vision, while diagram understanding has received little attention.
In this paper, we study the problem of diagram interpretation and reasoning,
the challenging task of identifying the structure of a diagram and the
semantics of its constituents and their relationships. We introduce Diagram
Parse Graphs (DPG) as our representation to model the structure of diagrams. We
define syntactic parsing of diagrams as learning to infer DPGs for diagrams and
study semantic interpretation and reasoning of diagrams in the context of
diagram question answering. We devise an LSTM-based method for syntactic
parsing of diagrams and introduce a DPG-based attention model for diagram
question answering. We compile a new dataset of diagrams with exhaustive
annotations of constituents and relationships for over 5,000 diagrams and
15,000 questions and answers. Our results show the significance of our models
for syntactic parsing and question answering in diagrams using DPGs
Інформаційне законодавство. Основні нормативні акти
Наведено основні нормативні акти з регулювання інформаційних відносин, зокрема, у сфері інформації, інформаційних агентств, телекомунікації,
радіочастотного ресурсу України, інформатизації, телебачення тощо.
Розраховано на студентів, які здобувають вищу освіту в галузях знань "Право", "Інформаційна безпека", "Комп'ютерні науки", "Телекомунікації"
Recommended from our members
Arctic Petroleum Technology Developments
This report discusses the ongoing debate about whether or not to open the Arctic National Wildlife Refuge (ANWR) for energy development, specifically the North Slope of Alaska for petroleum exploration and development. This report discusses the arguments for and against such development, especially with regard to environmental impacts
Triple modality image reconstruction of PET data using SPECT, PET, CT information increases lesion uptake in images of patients treated with radioembolization with [Formula: see text] micro-spheres.
PURPOSE: Nuclear medicine imaging modalities like computed tomography (CT), single photon emission CT (SPECT) and positron emission tomography (PET) are employed in the field of theranostics to estimate and plan the dose delivered to tumors and the surrounding tissues and to monitor the effect of the therapy. However, therapeutic radionuclides often provide poor images, which translate to inaccurate treatment planning and inadequate monitoring images. Multimodality information can be exploited in the reconstruction to enhance image quality. Triple modality PET/SPECT/CT scanners are particularly useful in this context due to the easier registration process between images. In this study, we propose to include PET, SPECT and CT information in the reconstruction of PET data. The method is applied to Yttrium-90 ([Formula: see text]Y) data. METHODS: Data from a NEMA phantom filled with [Formula: see text]Y were used for validation. PET, SPECT and CT data from 10 patients treated with Selective Internal Radiation Therapy (SIRT) were used. Different combinations of prior images using the Hybrid kernelized expectation maximization were investigated in terms of VOI activity and noise suppression. RESULTS: Our results show that triple modality PET reconstruction provides significantly higher uptake when compared to the method used as standard in the hospital and OSEM. In particular, using CT-guided SPECT images, as guiding information in the PET reconstruction significantly increases uptake quantification on tumoral lesions. CONCLUSION: This work proposes the first triple modality reconstruction method and demonstrates up to 69% lesion uptake increase over standard methods with SIRT [Formula: see text]Y patient data. Promising results are expected for other radionuclide combination used in theranostic applications using PET and SPECT
The novel choline kinase inhibitor ICL-CCIC-0019 reprograms cellular metabolism and inhibits cancer cell growth.
The glycerophospholipid phosphatidylcholine is the most abundant phospholipid species of eukaryotic membranes and essential for structural integrity and signaling function of cell membranes required for cancer cell growth. Inhibition of choline kinase alpha (CHKA), the first committed step to phosphatidylcholine synthesis, by the selective small-molecule ICL-CCIC-0019, potently suppressed growth of a panel of 60 cancer cell lines with median GI50 of 1.12 μM and inhibited tumor xenograft growth in mice. ICL-CCIC-0019 decreased phosphocholine levels and the fraction of labeled choline in lipids, and induced G1 arrest, endoplasmic reticulum stress and apoptosis. Changes in phosphocholine cellular levels following treatment could be detected non-invasively in tumor xenografts by [18F]-fluoromethyl-[1,2–2H4]-choline positron emission tomography. Herein, we reveal a previously unappreciated effect of choline metabolism on mitochondria function. Comparative metabolomics demonstrated that phosphatidylcholine pathway inhibition leads to a metabolically stressed phenotype analogous to mitochondria toxin treatment but without reactive oxygen species activation. Drug treatment decreased mitochondria function with associated reduction of citrate synthase expression and AMPK activation. Glucose and acetate uptake were increased in an attempt to overcome the metabolic stress. This study indicates that choline pathway pharmacological inhibition critically affects the metabolic function of the cell beyond reduced synthesis of phospholipids
The Cleo Rich Detector
We describe the design, construction and performance of a Ring Imaging
Cherenkov Detector (RICH) constructed to identify charged particles in the CLEO
experiment. Cherenkov radiation occurs in LiF crystals, both planar and ones
with a novel ``sawtooth''-shaped exit surface. Photons in the wavelength
interval 135--165 nm are detected using multi-wire chambers filled with a
mixture of methane gas and triethylamine vapor. Excellent pion/kaon separation
is demonstrated.Comment: 75 pages, 57 figures, (updated July 26, 2005 to reflect reviewers
comments), to be published in NIM
Preparation, structural characterisation and antibacterial properties of Ga-doped sol-gel phosphate-based glass
A sol-gel preparation of Ga-doped phosphate-based glass with potential application in antimicrobial devices has been developed. Samples of composition (CaO)(0.30)(Na2O)(0.20-x) (Ga2O3) (x) (P2O5)(0.50) where x = 0 and 0.03 were prepared, and the structure and properties of the gallium-doped sample compared with those of the sample containing no gallium. Analysis of the P-31 MAS NMR data demonstrated that addition of gallium to the sol-gel reaction increases the connectivity of the phosphate network at the expense of hydroxyl groups. This premise is supported by the results of the elemental analysis, which showed that the gallium-free sample contains significantly more hydrogen and by FTIR spectroscopy, which revealed a higher concentration of -OH groups in that sample. Ga K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure data revealed that the gallium ions are coordinated by six oxygen atoms. In agreement with the X-ray absorption data, the high-energy XRD results also suggest that the Ga3+ ions are octahedrally coordinated with respect to oxygen. Antimicrobial studies demonstrated that the sample containing Ga3+ ions had significant activity against Staphylococcus aureus compared to the control
A mechanism for morphogen-controlled domain growth
Many developmental systems are organised via the action of graded distributions of morphogens. In the Drosophila wing disc, for example, recent experimental evidence has shown that graded expression of the morphogen Dpp controls cell proliferation and hence disc growth. Our goal is to explore a simple model for regulation of wing growth via the Dpp gradient: we use a system of reaction-diffusion equations to model the dynamics of Dpp and its receptor Tkv, with advection arising as a result of the flow generated by cell proliferation. We analyse the model both numerically and analytically, showing that uniform domain growth across the disc produces an exponentially growing wing disc
Hyperpolarised 13C MRI: a new horizon for non-invasive diagnosis of aggressive breast cancer
Hyperpolarised 13C MRI (HP-MRI) is a novel imaging technique that allows real-time analysis of metabolic pathways
in vivo.
1
The technology to conduct HP-MRI in humans has recently become available and is starting to be clinically
applied. As knowledge of molecular biology advances, it is increasingly apparent that cancer cell metabolism is related
to disease outcomes, with lactate attracting specific attention. 2 Recent reviews of breast cancer screening programs
have raised concerns and increased public awareness of over treatment. The scientific community needs to shift focus
from improving cancer detection alone to pursuing novel methods of distinguishing aggressive breast cancers from
those which will remain indolent. HP-MRI offers the opportunity to identify aggressive tumour phenotypes and help
monitor/predict therapeutic response. Here we report one of the first cases of breast cancer imaged using HP-MRI
alongside correlative conventional imaging, including breast MRI
- …