16 research outputs found

    INITIAL DESIGN, MANUFACTURE, AND TESTING OF A CUBELAB MODULE FRAME FOR BIOLOGICAL PAYLOADS ABOARD THE INTERNATIONAL SPACE STATION

    Get PDF
    This thesis investigates the design of a CubeLab Module frame to facilitate biological research aboard the International Space Station (ISS). With the National Laboratory designation of the ISS by the United States Congress the barriers for use of the facility have been lowered for commercial and academic entities, allowing greater volume and diversity in the research that can be done. Researchers in biology and other areas could benefit from development and adoption of a plug-and-play payload containment system for use in the microgravity/space environment of the ISS. This research includes design and analysis of such a system. It also includes production and testing of a prototype. The relevant NASA requirements are documented, and they were considered during the design phase. Results from finite element analyses to predict performance of a proposed design under expected service conditions are reported. Results from functional testing of the prototype are also provided. A discussion of future work needed before the structure outlined in this thesis can become commercially viable is also presented

    Desensitization and binding properties determine distinct α1β2γ2 and α3β2γ2 GABAA receptor-channel kinetic behavior

    Get PDF
    GABAA receptor subtypes comprising the α1 and α3 subunits change with development and have a specific anatomical localization in the adult brain. These receptor subtypes have been previously demonstrated to greatly differ in deactivation kinetics but the underlying gating mechanisms have not been fully elucidated. Therefore, we expressed rat α1β2γ2 and α3β2γ2 receptors in human embryonic kidney 293 cells and recorded current responses to ultrafast GABA applications at macroscopic and single-channel levels. We found that the slow deactivation of α3β2γ2-mediated currents is associated with a relatively small rate and extent of apparent desensitization. In contrast, responses mediated by α1β2γ2 receptors had faster deactivation and stronger desensitization. α3β2γ2 receptors had faster recovery in the paired-pulse agonist applications than α1β2γ2 channels. The onset of currents mediated by α3β2γ2 receptors was slower than that of α1β2γ2 for a wide range of GABA concentrations. Single-channel analysis did not reveal differences in the opening/closing kinetics of α1β2γ2 and α3β2γ2 channels but burst durations were longer in α3β2γ2 receptors. Simulation with a previously reported kinetic model was used to explore the differences in respective rate constants. Reproduction of major kinetic differences required a smaller desensitization rate as well as smaller binding and unbinding rates in α3β2γ2 compared with α1β2γ2 receptors. Our work describes the mechanisms underlying the kinetic differences between two major GABAA receptor subtypes and provides a framework to interpret data from native GABA receptors

    GABA transient sets the susceptibility of mIPSCs to modulation by benzodiazepine receptor agonists in rat hippocampal neurons

    Get PDF
    Benzodiazepines (BDZs) are known to increase the amplitude and duration of IPSCs. Moreover, at low [GABA], BDZs strongly enhance GABAergic currents suggesting the up-regulation of agonist binding while their action on gating remains a matter of debate. In the present study we have examined the impact of flurazepam and zolpidem on mIPSCs by investigating their effects on GABAAR binding and gating and by considering dynamic conditions of synaptic receptor activation. Flurazepam and zolpidem enhanced the amplitude and prolonged decay of mIPSCs. Both compounds strongly enhanced responses to low [GABA] but, surprisingly, decreased the currents evoked by saturating or half-saturating [GABA]. Analysis of current responses to ultrafast GABA applications indicated that these compounds enhanced binding and desensitization of GABAA receptors. Flurazepam and zolpidem markedly prolonged deactivation of responses to low [GABA] but had almost no effect on deactivation at saturating or half-saturating [GABA]. Moreover, at low [GABA], flurazepam enhanced desensitization–deactivation coupling but zolpidem did not. Recordings of responses to half-saturating [GABA] applications revealed that appropriate timing of agonist exposure was sufficient to reproduce either a decrease or enhancement of currents by flurazepam or zolpidem. Recordings of currents mediated by recombinant (‘synaptic’) α1β2γ2 receptors reproduced all major findings observed for neuronal GABAARs. We conclude that an extremely brief agonist transient renders IPSCs particularly sensitive to the up-regulation of agonist binding by BDZs

    Kentucky Space: A Multi-University Small Satellite Enterprise

    Get PDF
    Kentucky Space is a consortium of universities located throughout the Commonwealth of Kentucky who have developed a collaboration with the goal of developing technologies and expertise in small satellites. In three years, Kentucky Space has progressed from concept to the launch of three sub-orbital sounding rocket payloads, the launch of a near-space high-altitude balloon mission, and the completion of its first satellite, KySat-1, which is scheduled to launch in 2010. To support these missions, Kentucky Space has established a network of VHF/UHF ground stations, adapted the 21-meter radio telescope at Morehead State University to support S-band communications for Low Earth Orbit satellites, and established fabrication and testing facilities to build and flight qualify small satellites; these include a dedicated cleanroom, thermal-vacuum facility, vibration facility, and communication test facilities. With students participating throughout the state, the team faces many of the challenges encountered in the aerospace industry today in terms of systems engineering, documentation, communication, scheduling, and management of a distributed team. This paper describes the past, present, and future projects of Kentucky Space and discusses the approaches used by the student team to overcome the challenges of operating a multi-university program

    Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight

    No full text
    Abstract Microphysiological systems provide the opportunity to model accelerated changes at the human tissue level in the extreme space environment. Spaceflight-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting in older adults, known as sarcopenia. These shared attributes provide a rationale for investigating molecular changes in muscle cells exposed to spaceflight that may mimic the underlying pathophysiology of sarcopenia. We report the results from three-dimensional myobundles derived from muscle biopsies from young and older adults, integrated into an autonomous CubeLab™, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analyses comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation. The analyses also revealed downregulated differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were downregulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides an approach to studying the cell autonomous effects of spaceflight on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. We also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLabTM payloads on the ISS

    Maximum likelihood fitting of single channel NMDA activity with a mechanism composed of independent dimers of subunits

    No full text
    Steady-state single channel activity from NMDA receptors was recorded at a range of concentrations of both glutamate and glycine. The results were fitted with several plausible mechanisms that describe both binding and gating. The mechanisms we have tested were based on our present understanding of receptor structure, or based on previously proposed mechanisms for these receptors. The steady-state channel properties appear to have virtually no dependence on the concentration of either ligand, other than the frequency of channel activations. This limited the ability to discriminate detail in the mechanism, and, along with the persistence of open–shut correlations in high agonist concentrations, suggests that NMDA channels, unlike other neurotransmitter receptors, cannot open unless all binding sites are occupied. As usual for analyses of NMDA channels, the applicability of our results to physiological observations is limited by uncertainties in synaptic zinc and hydrogen ion concentrations, both of these being known to affect the receptor. The mechanism that we propose, on the basis of steady-state single channel recordings, predicts with fair accuracy the apparent open and shut-time distributions in different concentrations of agonists, correlations between open and shut times, and both the rising and falling phases of the macroscopic response to concentration jumps, and can therefore account for the main features of synaptic currents
    corecore