106 research outputs found

    Excess Mechanical Loss Associated with Dielectric Mirror Coatings on Test Masses in Interferometric Gravitational Wave Detectors

    Full text link
    Interferometric gravitational wave detectors use mirrors whose substrates are formed from materials of low intrinsic mechanical dissipation. The two most likely choices for the test masses in future advanced detectors are fused silica or sapphire. These test masses must be coated to form mirrors, highly reflecting at 1064nm. We have measured the excess mechanical losses associated with adding dielectric coatings to substrates of fused silica and calculate the effect of the excess loss on the thermal noise in an advanced interferometer.Comment: Submitted to LSC (internal) review Sept. 20, 2001. To be submitted to Phys. Lett.

    The Genomic Signature of Crop-Wild Introgression in Maize

    Get PDF
    The evolutionary significance of hybridization and subsequent introgression has long been appreciated, but evaluation of the genome-wide effects of these phenomena has only recently become possible. Crop-wild study systems represent ideal opportunities to examine evolution through hybridization. For example, maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter, mexicana) are known to hybridize in the fields of highland Mexico. Despite widespread evidence of gene flow, maize and mexicana maintain distinct morphologies and have done so in sympatry for thousands of years. Neither the genomic extent nor the evolutionary importance of introgression between these taxa is understood. In this study we assessed patterns of genome-wide introgression based on 39,029 single nucleotide polymorphisms genotyped in 189 individuals from nine sympatric maize-mexicana populations and reference allopatric populations. While portions of the maize and mexicana genomes were particularly resistant to introgression (notably near known cross-incompatibility and domestication loci), we detected widespread evidence for introgression in both directions of gene flow. Through further characterization of these regions and preliminary growth chamber experiments, we found evidence suggestive of the incorporation of adaptive mexicana alleles into maize during its expansion to the highlands of central Mexico. In contrast, very little evidence was found for adaptive introgression from maize to mexicana. The methods we have applied here can be replicated widely, and such analyses have the potential to greatly informing our understanding of evolution through introgressive hybridization. Crop species, due to their exceptional genomic resources and frequent histories of spread into sympatry with relatives, should be particularly influential in these studies

    Stream turbidity responses to storm events in a pristine rainforest watershed on the Coral Coast of southern Fiji

    Get PDF
    © 2016 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research On the Coral Coast of Viti Levu Island in Fiji, inadequate knowledge of suspended sediment delivery patterns in small pristine coastal watersheds hinders any future assessment of accelerated erosion in disturbed areas nearby. This study adopts a rainfall–stream turbidity monitoring approach in the Votua Creek, which drains a small, steep but minimally-disturbed coastal rainforest catchment. Storm rainfall characteristics, stream depth and water turbidity were continuously monitored over one complete Fiji wet season from October 2009 to April 2010. The aim was to evaluate whether these parameters provide sufficient information to illustrate basic features of storm–sediment transport responses, in the case of limited stream gauging and very simple sediment rating curves. This is important because Pacific Island nations like Fiji do not have the resources to initiate long-term gauging and sediment sampling programmes across numerous small catchments. A significant power function demonstrates that turbidity (T) is a suitable proxy for total suspended solids (TSS) for turbidity measurements above 5 NTU, with TSS=0.930T1.111 (r=0.98, P\u3c0.001). Over the study period, 10 individual storms 11.2–120.1 mm in size produced a ‘significant turbidity response’ (STR) in the Votua Creek. Rainfall parameters (totals and intensities) showed positive linear relationships (r=0.72–0.94) with stream turbidity parameters (mean, maximum, duration), whilst relationships of similar strength (r=0.76–0.98) were also derived between stream flow depth and turbidity. This implies that for small rainforest watersheds in Fiji, rainfall parameters offer no substantial disadvantage over flow as predictors of stream sediment responses to major storms. Event-based analysis revealed that negative (anticlockwise) hysteresis is a typical flow–turbidity pattern for STR events. Negative hysteresis is produced when secondary episodes of renewed (heavy) rainfall occur after maximum intensity, in the later phase of storm events. Tropical Cyclone Mick in December 2009 generated the largest flood and the greatest turbidity response (Tmax=1021 NTU, Tmean=207 NTU). This concurs with earlier work confirming that tropical cyclones are the most important events for sediment transport in Fiji stream networks

    The case for the continued use of the genus name Mimulus for all monkeyflowers

    Get PDF
    The genus Mimulus is a well-studied group of plant species, which has for decades allowed researchers to address a wide array of fundamental questions in biology (Wu & al. 2008; Twyford & al. 2015). Linnaeus named the type species of Mimulus (ringens L.), while Darwin (1876) used Mimulus (luteus L.) to answer key research questions. The incredible phenotypic diversity of this group has made it the focus of ecological and evolutionary study since the mid-20th century, initiated by the influential work of Clausen, Keck, and Hiesey as well as their students and collaborators (Clausen & Hiesey 1958; Hiesey & al. 1971, Vickery 1952, 1978). Research has continued on this group of diverse taxa throughout the 20th and into the 21st century (Bradshaw & al. 1995; Schemske & Bradshaw 1999; Wu & al. 2008; Twyford & al. 2015; Yuan 2019), and Mimulus guttatus was one of the first non-model plants to be selected for full genome sequencing (Hellsten & al. 2013). Mimulus has played a key role in advancing our general understanding of the evolution of pollinator shifts (Bradshaw & Schemske 2003; Cooley & al. 2011; Byers & al. 2014), adaptation (Lowry & Willis 2010; Kooyers & al. 2015; Peterson & al. 2016; Ferris & Willis 2018; Troth & al. 2018), speciation (Ramsey & al. 2003; Wright & al. 2013; Sobel & Streisfeld 2015; Zuellig & Sweigart 2018), meiotic drive (Fishman & Saunders 2008), polyploidy (Vallejo-MarĂ­n 2012; Vallejo-MarĂ­n & al. 2015), range limits (Angert 2009; Sexton et al. 2011; Grossenbacher & al. 2014; Sheth & Angert 2014), circadian rhythms (Greenham & al. 2017), genetic recombination (Hellsten & al. 2013), mating systems (Fenster & Ritland 1994; Dudash & Carr 1998; Brandvain & al. 2014) and developmental biology (Moody & al. 1999; Baker & al. 2011, 2012; Yuan 2019). This combination of a rich history of study coupled with sustained modern research activity is unparalleled among angiosperms. Across many interested parties, the name Mimulus therefore takes on tremendous biological significance and is recognizable not only by botanists, but also by zoologists, horticulturalists, naturalists, and members of the biomedical community. Names associated with a taxonomic group of this prominence should have substantial inertia, and disruptive name changes should be avoided. As members of the Mimulus community, we advocate retaining the genus name Mimulus to describe all monkeyflowers. This is despite recent nomenclature changes that have led to a renaming of most monkeyflower species to other genera.Additional co-authors: Jannice Friedman, Dena L Grossenbacher, Liza M Holeski, Christopher T Ivey, Kathleen M Kay, Vanessa A Koelling, Nicholas J Kooyers, Courtney J Murren, Christopher D Muir, Thomas C Nelson, Megan L Peterson, Joshua R Puzey, Michael C Rotter, Jeffrey R Seemann, Jason P Sexton, Seema N Sheth, Matthew A Streisfeld, Andrea L Sweigart, Alex D Twyford, John H Willis, Kevin M Wright, Carrie A Wu, Yao-Wu Yua

    Genetic and ecological outcomes of Inga vera subsp. affinis (leguminosae) tree plantations in a fragmented tropical landscape

    Get PDF
    Planting of native trees for habitat restoration is a widespread practice, but the consequences for the retention and transmission of genetic diversity in planted and natural populations are unclear. Using Inga vera subsp. affinis as a model species, we genotyped five natural and five planted populations in the Atlantic forest of northeastern Brazil at polymorphic microsatellite loci. We studied the breeding system and population structure to test how much genetic diversity is retained in planted relative to natural populations. We then genotyped seedlings from these populations to test whether genetic diversity in planted populations is restored by outcrossing to natural populations of I. vera. The breeding system of natural I. vera populations was confirmed to be highly outcrossing (t = 0.92; FIS = -0.061, P = 0.04), with populations showing weak population substructure (FST = 0.028). Genetic diversity in planted populations was 50% less than that of natural populations (planted: AR = 14.9, HO = 0.865 and natural: AR = 30.8, HO = 0.655). However, seedlings from planted populations showed a 30% higher allelic richness relative to their parents (seedlings AR = 10.5, parents AR = 7.6). Understanding the processes and interactions that shape this system are necessary to provide ecologically sensible goals and successfully restore hyper-fragmented habitats. Future restoration plans for I. vera must consider the genetic diversity of planted populations and the potential for gene flow between natural populations in the landscape, in order to preserve ecological interactions (i.e. pollination), and promote opportunities for outcrossing
    • 

    corecore