414 research outputs found

    Evaluation of Materials and Concepts for Aircraft Fire Protection

    Get PDF
    Woven fiberglass fluted-core simulated aircraft interior panels were flame tested and structurally evaluated against the Boeing 747 present baseline interior panels. The NASA-defined panels, though inferior on a strength-to-weight basis, showed better structural integrity after flame testing, due to the woven fiberglass structure

    Development of aircraft lavatory compartments with improved fire resistance characteristics, phase 1: Fire containment test of a wide body aircraft lavatory module

    Get PDF
    A test was conducted to evaluate the fire containment characteristics of a Boeing 747 lavatory module. Results showed that the fire was contained within the lavatory during the 30-minute test period with the door closed. The resistance of the lavatory wall and ceiling panels and general lavatory construction to burn-through under the test conditions was demonstrated

    Use of Individual-Level Covariates to Improve Latent Class Analysis of Trypanosoma Cruzi Diagnostic Tests

    Get PDF
    Statistical methods such as latent class analysis can estimate the sensitivity and specificity of diagnostic tests when no perfect reference test exists. Traditional latent class methods assume a constant disease prevalence in one or more tested populations. When the risk of disease varies in a known way, these models fail to take advantage of additional information that can be obtained by measuring risk factors at the level of the individual. We show that by incorporating complex field-based epidemiologic data, in which the disease prevalence varies as a continuous function of individual-level covariates, our model produces more accurate sensitivity and specificity estimates than previous methods. We apply this technique to several simulated populations and to actual Chagas disease test data from a community near Arequipa, Peru. Results from our model estimate that the first-line enzyme-linked immunosorbent assay has a sensitivity of 78% (95% CI: 62-100%) and a specificity of 100% (95% CI: 99-100%). The confirmatory immunofluorescence assay is estimated to be 73% sensitive (95% CI: 65-81%) and 99% specific (95% CI: 96-100%)

    Fire safety evaluation of aircraft lavatory and cargo compartments

    Get PDF
    Large-scale aircraft lavatory and cargo compartment fire tests are described. Tests were conducted to evaluate the effectiveness of these compartments to contain fire and smoke. Two tests were conducted and are detailed. Test 1 involved a production Boeing 747 lavatory of the latest design installed in an enclosure outside the aircraft, to collect gases and expose animals to these gases. Results indicate that the interior of the lavatory was completely burned, evolving smoke and combustion products in the enclosure. Test 2 involved a simulated Douglas DC-10 cargo compartment retro-fitted with standard fiberglass liner. The fire caused excessive damage to the liner and burned through the ceiling in two areas. Test objectives, methods, materials, and results are presented and discussed

    A History of Chagas Disease Transmission, Control, and Re-Emergence in Peri-Rural La Joya, Peru

    Get PDF
    The historically rural problem of Chagas disease is increasing in urban areas in Latin America. Peri-rural development may play a critical role in the urbanization of Chagas disease and other parasitic infections. We conducted a cross-sectional study in an urbanizing rural area in southern Peru, and we encountered a complex history of Chagas disease in this peri-rural environment. Specifically, we discovered: (1) long-standing parasite transmission leading to substantial burden of infection; (2) interruption in parasite transmission resulting from an undocumented insecticide application campaign; (3) relatively rapid re-emergence of parasite-infected vector insects resulting from an unsustained control campaign; (4) extensive migration among peri-rural inhabitants. Long-standing parasite infection in peri-rural areas with highly mobile populations provides a plausible mechanism for the expansion of parasite transmission to nearby urban centers. Lack of commitment to control campaigns in peri-rural areas may have unforeseen and undesired consequences for nearby urban centers. Novel methods and perspectives are needed to address the complexities of human migration and erratic interventions

    Principles for the design and operation of engineer-to-order supply chains in the construction sector

    Get PDF
    By integrating the approaches of Forrester and Burbidge [Forrester, J. W. 1961. Industrial Dynamics. Pegasus Communications; Burbidge, J. L. 1961. “The “New Approach” to Production.” Production Engineer 40: 769–784], a set of five design principles have emerged which provide a foundation for sound supply chain design. The ‘FORRIDGE’ principles have since been shown to be a powerful guide for effective design of make-to-stock supply chains. However, some have questioned the applicability of generic supply chain thinking, arguing for a tailored approach. Hence, the goal here is to investigate how these principles should be adapted for engineer-to-order (ETO) industries, such as construction, capital goods and shipbuilding. The empirical elements draw on an extensive study of 12 suppliers and two large contractors in the construction industry. Supply chain tactics are identified for this range of companies, which are matched with real world problems, and linked with the FORRIDGE principles. This results in an additional ‘Design for X’ principle being proposed. The contributions made are the adaptation of established principles for the ETO sector, and the framework behind these principles

    Unbinned Deep Learning Jet Substructure Measurement in High Q2Q^2 ep collisions at HERA

    Get PDF
    The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the kTk_{\mathrm{T}} jet clustering algorithm. Results are reported at high transverse momentum transfer Q2>150Q^2>150 GeV2{}^2, and inelasticity 0.2<y<0.70.2 < y < 0.7. The analysis is also performed in sub-regions of Q2Q^2, thus probing scale dependencies of the substructure variables. The data are compared with a variety of predictions and point towards possible improvements of such models.Comment: 33 pages, 10 figures, 8 table
    corecore