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Statistical methods such as latent class analysis can estimate the sensitivity and specificity of

diagnostic tests when no perfect reference test exists. Traditional latent class methods assume a
constant disease prevalence in one or more tested populations. When the risk of disease varies in
a known way, these models fail to take advantage of additional information that can be obtained
by measuring risk factors at the level of the individual. We show that by incorporating complex
field-based epidemiologic data, in which the disease prevalence varies as a continuous function of
individual-level covariates, our model produces more accurate sensitivity and specificity estimates
than previous methods. We apply this technique to several simulated populations and to actual
Chagas disease test data from a community near Arequipa, Peru. Results from our model estimate
that the first-line enzyme-linked immunosorbent assay has a sensitivity of 78% (95% CI: 62-100%)
and a specificity of 100% (95% CI: 99-100%). The confirmatory immunofluorescence assay is
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1 Introduction
Chagas disease is a vector-borne infection caused by the protozoan parasite Try-
panosoma cruzi. In the Americas, Chagas disease is responsible for more mor-
bidity and mortality than any other parasitic illness (World Health Organization,
2004). Transmission of T. cruzi typically occurs when contaminated feces of an
infected blood-feeding triatomine insect enter a human host through the insect bite
site or mucous membranes (Kirchhoff et al., 2004). T. cruzi can also be transmit-
ted through blood transfusions (Young et al., 2007), organ transplants (Kun et al.,
2009), consumption of contaminated food (Nóbrega et al., 2009), and congenitally
from mother to child (Bern et al., 2009).

Many people infected with T. cruzi are unaware of their infection (Tarleton
et al., 2007). For this reason, various serologic tests are used to detect infected in-
dividuals and protect the blood supply in Latin America (de Andrade et al., 1996,
Blejer et al., 2001, Langhi Jr et al., 2002, Pirard et al., 2005) and the United States
(Centers for Disease Control and Prevention, 2007). Proper interpretation of the
results of these diagnostic tests requires knowledge of the sensitivity and specificity
of each assay. Unfortunately there is no “gold standard” reference test for identify-
ing T. cruzi infection (Tarleton et al., 2007). Parasitologic testing, which provides a
clear definition of infection and is virtually 100% specific, is insensitive (Pirard et
al., 2005). Serologic assays are frequently employed, but these also lack sensitivity
due to their preparation from inappropriate stages of the parasite life-cycle (Tarleton
et al., 2007) or because there is a great and largely unknown variety among T. cruzi
strains in different regions (Verani et al., 2009). Absent a perfect reference test, the
performance of Chagas disease assays can only be estimated by statistical methods
that compare results from two or more imperfect tests.

Latent class analysis (LCA) is a popular approach to estimating perfor-
mance of diagnostic tests in the absence of a gold standard. In LCA, a probabilistic
model is assumed for the relationship between the diagnostic test results and the
unobserved, or latent, disease status (Hui and Walter, 1980, Qu et al., 1996, Goet-
ghebeur et al., 2000). In this paper we focus on LCA estimates in the commonly
encountered scenario in which only two conditionally independent diagnostic tests
are used (Hui and Walter, 1980, Joseph et al., 1995, Staquet et al., 1981, Walter and
Irwig, 1988, Basáñez et al., 2004). We also perform a sensitivity analysis to investi-
gate the effect of conditional dependence on our parameter estimates. An unbiased
estimate for the two-test case is desirable in the context of Chagas disease, where
limited resources restrict the number of tests that can be performed.

If the two tests are applied to a single population, then the model has five un-
known parameters (the disease prevalence, the two sensitivities, and the two speci-
ficities) but the data contain only three degrees of freedom. Because the number of
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parameters exceeds the number of degrees of freedom, the model is nonidentifiable
and estimates can only be obtained by introducing constraints (Walter and Irwig,
1988). One constraint technique consists of a Bayesian approach in which infor-
mative prior distributions are placed on at least two parameters (Joseph et al., 1995,
Basáñez et al., 2004). A problem with this approach is that in nonidentifiable prob-
lems the posterior parameter estimates continue to be affected by the priors even as
the sample size goes to infinity (Dendukuri and Joseph, 2001).

Alternatively, the two tests can be applied to two distinct populations. The
model is then identifiable (provided that the two populations have sufficiently dif-
ferent disease prevalences) and can be solved by a maximum likelihood procedure
(Hui and Walter, 1980). This approach has been used in the case of two geographi-
cally distinct populations with different prevalences (Hui and Walter, 1980, Johnson
et al., 2001).

In this paper we describe a method for modeling the risk of disease as a func-
tion of multiple continuous individual-level covariates. Extended latent class mod-
els with covariates have been described previously (Huang and Bandeen-Roche,
2004, Hadgu and Qu, 1998, Dendukuri et al., 2009, Jones et al., 2009). Temporal
covariates have been used, for example, to model test results as a function of days
post infection (Engel et al., 2009) or to allow infection probability to depend on a
covariate such as age (Branscum et al., 2008). We extend these analyses to con-
sider a specific example of a population in which the probability of Chagas disease
depends on several measurable temporal covariates. Our technique produces more
precise parameter estimates than models that collapse the risk profile into a single
binary covariate.

2 Methods

2.1 Specification of Covariate-Augmented LCA Model

We first review the likelihood computation for a two-test latent class model in which
a single binary covariate separates tested individuals into two groups with different
prevalences. We then show how to generalize this model to the case where the risk
of disease is a continuous function of multiple covariates. Assume that two binary
tests yi (i = 1,2) are applied to N individuals. Positive test results are represented
by yi = 1 and negative results by yi = 0. Let Si and Ci be the sensitivity and speci-
ficity, respectively, of test yi. Si and Ci are assumed constant across all individuals.
A binary covariate is measured and used to divide the sample N into two subpop-
ulations of size Ng (where g = 1,2 and N1 +N2 = N) with distinct prevalences σg.
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The likelihood l of the model is

l =
2

∏
g=1
{σgS1S2 +(1−σg)(1−C1)(1−C2)}Ng11

×{σgS1(1−S2)+(1−σg)(1−C1)C2}Ng10

×{σg(1−S1)S2 +(1−σg)C1(1−C2)}Ng01

×{σg(1−S1)(1−S2)+(1−σg)C1C2}Ng00,

(1)

where Ng jk ( j,k = 0,1) is the number of individuals in population g with observed
test results y1 = j and y2 = k. This likelihood is (apart from a constant coefficient)
a multinomial likelihood. The goal of traditional LCA is to find parameters σg, Si,
and Ci that maximize l.

We now relax the assumption of a single binary covariate. For individual
n (n = 1, ...,N) in the sample, let the probability of disease σn be a function of M
measurable covariates:

σn = Pr(disease|covariates) = f (ψ1(n),ψ2(n), ...,ψM(n)) (2)

where ψm(n) (m = 1, ...,M) is the value of the mth covariate in this subject. The
covariates ψm may be continuous (e.g., age) or discrete. Specification of σn also
requires a set of U risk parameters β = (β1, ...,βU ) that capture the manner in which
the covariates influence the risk of disease. The functional form of σn is assumed
to be known a priori and the model estimates the values of the risk parameters β .
The likelihood L of this variable-risk model is

L = Pr(observed data|Si,Ci,β )

=
N

∏
n=1
{σnS1S2 +(1−σn)(1−C1)(1−C2)}δn11

×{σnS1(1−S2)+(1−σn)(1−C1)C2}δn10

×{σn(1−S1)S2 +(1−σn)C1(1−C2)}δn01

×{σn(1−S1)(1−S2)+(1−σn)C1C2}δn00,

(3)

where δn jk = 1 if individual n has test results y1 = j and y2 = k, and δn jk = 0 oth-
erwise. It can be shown that when σn is a binary function of a single covariate,
equation (3) reduces to the two test/two population likelihood function. The advan-
tage of allowing σn to vary across all individuals is that in some cases the disease
process may best be described as a function of one or more possibly continuous
variables.
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Table 1: Frequency of observed Trypanosoma cruzi diagnostic test results in La
Joya, Peru.

IFA+ IFA- IFA not Total
performed

ELISA+ 101 39 0 140
ELISA- 8 226 944 1178
Total 109 265 944 1318

2.2 Peruvian Chagas Disease Data and Infection Risk

The development of our model was motivated by Trypanosoma cruzi diagnostic
test data from La Joya (population 2252), a community in the Peruvian department
of Arequipa. In 2008 a cross-sectional serologic and socio-demographic study was
conducted in La Joya. A total of 1333 individuals participated in the survey. Fifteen
subjects were excluded from the following analysis due to missing or indeterminate
data, making N = 1318 in the final sample.

Each individual’s serum was screened for T. cruzi infection with a commer-
cially available enzyme-linked immunosorbent assay (ELISA) (Chagatek, Labora-
torio Lemos SRL, Buenos Aires). All ELISA-positive sera and a random sample
of 20% of ELISA-negative sera were also tested with an immunofluorescence as-
say (IFA) used as a confirmatory test (Table 1). The study protocol was approved
by the institutional review boards of the Johns Hopkins Bloomberg School of Pub-
lic Health and Universidad Peruana Cayetano Heredia, and analysis of data was
approved by the University of Pennsylvania and Vanderbilt University.

Analysis of confirmed positive (ELISA+/IFA+) individuals showed that the
yearly risk of T. cruzi infection in La Joya was greater prior to an insecticide spray
campaign that occurred in 1995. The yearly infection risk for time lived outside the
study community was also different than the risk during time spent in La Joya. The
total probability of infection was best fit by an expanded catalytic model (Muench,
1959) given by

σn(Tpre(n),Tpost(n),Tout(n))
= 1− exp(−βpreTpre(n)−βpostTpost(n)−βoutTout(n)−K),

(4)

where the individual-level covariates are Tpre(n), Tpost(n), and Tout(n) (Delgado et
al., 2011). Tpre represents the number of years lived in the study community prior
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to 1996 (the first full calendar year in which vector-borne transmission was inter-
rupted); Tpost is the number of years lived in La Joya after transmission interruption;
and Tout is the number of years lived outside the study community. For each indi-
vidual, Tpre(n)+Tpost(n)+Tout(n) = age. Figure 1 shows the distribution of these
temporal covariates in the sampled residents of La Joya. In the definition of σn, the
coefficients βpre, βpost , and βout represent the differential risk factors for exposure
to T. cruzi during each residence period. The final model parameter, K, is related to
the probability of time-independent transmission of T. cruzi, including congenital
transmission.

Figure 1: Residence time history data for individuals tested for T. cruzi infection in
La Joya, Arequipa, Peru. The 1318 subjects are ordered by increasing age on the
x-axis. Transmission interruption due to insecticide spraying is presumed to have
occurred twelve years prior to data collection, and thus Tpost ≤ 12 for all subjects.
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2.2.1 Verification Bias Correction

Only 20% of ELISA-negative individuals in La Joya underwent testing with IFA.
This type of missing data, in which individuals with positive outcomes on a screen-
ing test are preferentially selected for subsequent confirmatory testing, is commonly
referred to as verification bias (Greenes and Begg, 1985). Verification bias is prob-
lematic in our situation because the likelihood function derived in Section 2.1 in-
cludes contributions only from individuals tested with both assays. Thus useful
covariate information from 80% of ELISA-negative individuals will be discarded.
Furthermore, an attempt to apply equation (3) to the subset of individuals who
underwent both diagnostic tests would result in inaccurate estimates of disease
prevalence and ELISA sensitivity and specificity, due to the falsely low number
of ELISA-negative individuals in the sample.

Fortunately equation (3) can be modified in a straightforward manner to
allow all individuals, including those who underwent only one diagnostic test, to
contribute to the likelihood function. Let α represent the fraction of individuals
with y1 = 0 who were tested with the confirmatory test (e.g., α = 0.2 in La Joya).
There are five possible combinations of diagnostic test results whose probabilities
are given by

P11(n) = Pr(y1 = 1,y2 = 1) = σnS1S2 +(1−σn)(1−C1)(1−C2)

P10(n) = Pr(y1 = 1,y2 = 0) = σnS1(1−S2)+(1−σn)(1−C1)C2

P01(n) = Pr(y1 = 0,y2 = 1) = α[σn(1−S1)S2 +(1−σn)C1(1−C2)]

P00(n) = Pr(y1 = 0,y2 = 0) = α[σn(1−S1)(1−S2)+(1−σn)C1C2]

P0X(n) = Pr(y1 = 0,y2 not performed) = (1−α)[σn(1−S1)+(1−σn)C1].

(5)

The proper covariate-augmented likelihood function, in the setting of verification
bias, includes contributions from all five probabilities:

L = Pr(observed data|Si,Ci,β ,α)

=
N

∏
n=1

P11(n)δn11P10(n)δn10P01(n)δn01P00(n)δn00P0X(n)δn0X ,
(6)

where δn0X = 1 if individual n has y1 = 0 and is not tested with assay y2, and
δn0X = 0 otherwise.
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2.3 Simulation Methods

To evaluate the accuracy and robustness of our proposed method, we performed
four sets of simulations (hereafter referred to as Simulations A through D). The
first three simulations were based on populations with epidemiologic characteristics
similar to those found in our La Joya Chagas disease survey. In each case we
created a set of N = 1318 individuals with values of Tpre(n), Tpost(n), and Tout(n)
identical to those in our La Joya sample (Figure 1). We then used equation (4)
to assign a unique probability of infection, σn, to each individual. We fixed the
population’s risk parameters at βpre = 0.01, βpost = 0.001, βout = 0.0015, and K =
0.005. For biological plausibility, these values were chosen to be similar to risk
parameters estimated previously in La Joya by Delgado et al. (2011). Our choice of
risk factors, combined with the measured temporal covariates, produced an overall
disease prevalence of 8.5% in the simulated populations.

We next assigned a sensitivity and specificity to each diagnostic test. To
measure the performance of our model over a range of diagnostic test parameters,
we chose nine different combinations of Si and Ci. Diagnostic test results for each
individual were then assigned probabilistically using a random number generator.
Given Si, Ci, and an individual’s unique value of σn, the probabilities of being
assigned each of the five possible combinations of test results were as given in
equation (5). In the simulations with no verification bias, there were only four
possible combinations of test results. We repeated this procedure to generate a total
of 1000 simulated data sets per sensitivity/specificity combination.

The purpose of Simulation A was to compare our method to the two test/two
population LCA model described in Hui and Walter (1980). The simulated diag-
nostic test results were created with no verification bias (α = 1). To form two popu-
lations we divided the sample into “young” and “old” groups based on whether the
individual was born before or after the 1996 transmission interruption. The two-
population model assumed that the prevalences were distinct in the two groups, and
equation (1) was used to define the model likelihood. We minimized − ln(l) using
the nlminb function in R 2.8.1 (R Foundation for Statistical Computing, www.r-
project.org). We also fit each data set with our variable-risk model described in
Section 2.1. This model assumed that the functional form of σn was as given in
equation (4). Equation (3) was used to define the model likelihood, and we used
the R nlminb function to minimize − ln(L). Total computation time for all 9000
replicates of Simulation A was seven hours on a Linux-based machine with a single
2.0GHz Intel processor.

We performed a second set of simulations (Simulation B) to determine the
effects of verification bias on our results. For this test we set α = 0.2 when creating
the simulated diagnostic test data. Thus 80% of individuals with y1 = 0 were not
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assigned a result on test y2. Equation (6) was used to determine the likelihood of
our proposed model, and we again used the R nlminb function to minimize− ln(L).

Two additional simulations were designed to evaluate our model’s robust-
ness with respect to misspecification of the functional form of σn. In our third
simulation (Simulation C) we generated diagnostic test results as above using the
complex functional form of σn given in equation (4). We then conducted our la-
tent class analysis under the erroneous assumption of the following simpler preva-
lence function in which the probability of infection depends only on age: σn(An) =
1− exp(−βageAn), where An is the age of the nth individual and βage is a constant
age-based risk parameter.

In our final simulation (Simulation D) we created a population of 1000 in-
dividuals with a flat age distribution uniform(0, 80 years). The disease prevalence
as a function of age was quadratic: σn(An) = 0.00003×A2

n. The value of the age
coefficient was chosen such that σn = 0 in newborns and rises to σn = 19.2% in
individuals with the maximum age of 80 years. Once again we chose nine differ-
ent combinations of Si and Ci and stochastically assigned diagnostic test results to
each individual. We performed our parameter estimation using a misspecified LCA
model that assumed a disease prevalence σn = βageAn that varied linearly, rather
than quadratically, with age.

2.4 Analysis of Peruvian T. cruzi Test Data

We analyzed the actual La Joya residence time data and Trypanosoma cruzi test
results (Figure 1 and Table 1) with our variable-risk LCA technique. Equation (4)
was used to specify the functional form of σn. Given this expression for σn, we
constructed the model likelihood via equation (6). The nlminb function in R 2.8.1
was used to minimize − ln(L). In addition to computing the maximum-likelihood
parameters, we employed a percentile bootstrap (1000 iterations) to compute 95%
prediction intervals for each parameter (Efron and Tibshirani, 1993).

2.4.1 Relaxation of Conditional Independence Assumption

We extended our model to explore the possibility of covariance between ELISA
and IFA results in La Joya. We specified the conditional dependence between the
tests given a subject’s true infection status via two extra parameters, covs12 and
covc12, that represent the covariance between the tests in infected and uninfected
individuals, respectively (Dendukuri and Joseph, 2001). The effect of the covari-
ance parameters is to increase the probability of identical test results (i.e., y1 = y2)
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by an amount covs12 (in infected subjects) or covc12 (in uninfected subjects) com-
pared with the conditionally independent case. We restricted our analysis to the
scenario in which the two diagnostic tests are positively correlated.

We modified equation (6), using the methods of Dendukuri and Joseph
(2001), to compute the model likelihood in the conditionally dependent case. It has
been shown that two-test latent class models that allow for unknown conditional
dependence are nonidentifiable even when the two diagnostic tests are applied to
a large number of distinct populations (Johnson and Hanson, 2005). Because the
full model is nonidentifiable, we did not attempt to maximize the likelihood func-
tion to solve for all parameters simultaneously. Instead, we performed a sensitivity
analysis to determine the effect of different covariance parameters on our La Joya
parameter estimates.

For any given Si and Ci, the covariance parameters must satisfy the rela-
tions covs12 ≤ min(S1,S2)− S1S2 and covc12 ≤ min(C1,C2)−C1C2 (Dendukuri
and Joseph, 2001). If we assume the Chagas disease diagnostic tests used in La
Joya have greater than 50% sensitivity and specificity, then covs12 < 0.25 and
covc12 < 0.25. Thus for our sensitivity analysis we chose eleven different fixed
combinations of covs12 and covc12 between 0 and 0.2. For each case we obtained
maximum-likelihood estimates of diagnostic test sensitivity and specificity. We also
computed 95% prediction intervals for each parameter using a percentile bootstrap
with 1000 iterations.

3 Results

3.1 Simulation Results

Results of Simulation A are shown in Table 2. Our model produces more accurate
sensitivity and specificity estimates than the two test/two population model, with
a bigger gain in accuracy for sensitivity. For all settings considered and for both
sensitivity and specificity, the mean square error (bias2 + variance) of our model’s
estimator is at least as small as that of the two test/two population model. Our
model’s sensitivity estimate is considerably less biased than that of the two test/two
population model when the true sensitivity is 95%. For other settings, both models
estimate sensitivity with low bias. The standard deviation of our model’s estimate
of sensitivity is more than 25% smaller than that of the two test/two population
model in 8 of 9 settings for both S1 and S2. With respect to specificity, the bias of
our model’s estimates and those of the two test/two population model are similar
and small in all settings. The standard deviation of our model’s specificity estimate
is always smaller than that of the two test/two population model.
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Table 2: Results of Simulation A. True values of each diagnostic test parameter are compared to estimates from a
covariate-augmented LCA model with a variable risk function (“Model1”) and a model that used an age cutoff to di-
vide the population into two groups with different prevalences (“Model2”). Each parameter estimate is presented as
mean ± standard deviation (95% CI) of 1000 simulations. All values are reported as percents.

Model1
True Estimated True Estimated True Estimated True Estimated
S1 S1 C1 C1 S2 S2 C2 C2

70 69 ± 17.4 (40,100) 70 71 ± 2.6 (67,77) 70 69 ± 17.2 (42,100) 70 71 ± 2.5 (67,77)
70 69 ± 7.2 (56,84) 70 70 ± 1.7 (67,74) 95 88 ± 13.6 (57,100) 95 95 ± 1.6 (93,99)
70 71 ± 9.7 (53,92) 95 95 ± 1 (93,97) 70 71 ± 9.8 (53,93) 95 95 ± 1 (93,97)
85 85 ± 10.5 (65,100) 85 85 ± 1.5 (82,88) 85 84 ± 10.3 (64,100) 85 85 ± 1.5 (83,88)
85 85 ± 7.1 (71,100) 85 85 ± 1.2 (83,88) 95 93 ± 8.2 (74,100) 95 95 ± 1 (93,97)
85 85 ± 7.5 (71,100) 95 95 ± 0.9 (93,97) 85 85 ± 7.8 (70,100) 95 95 ± 0.9 (93,97)
95 92 ± 8.8 (71,100) 70 71 ± 2 (67,75) 95 91 ± 9.4 (69,100) 70 71 ± 1.9 (67,75)
95 93 ± 7.3 (76,100) 85 85 ± 1.4 (83,88) 95 93 ± 7.5 (76,100) 85 85 ± 1.3 (83,88)
95 94 ± 5.3 (82,100) 95 95 ± 0.8 (94,97) 95 94 ± 5.4 (82,100) 95 95 ± 0.8 (94,97)

Model2
70 69 ± 22.3 (37,100) 70 73 ± 7.2 (66,100) 70 68 ± 22.4 (37,100) 70 72 ± 6 (66,95)
70 70 ± 10.1 (53,94) 70 71 ± 2.3 (67,76) 95 82 ± 20 (42,100) 95 95 ± 2.1 (92,100)
70 72 ± 14.6 (48,100) 95 95 ± 1.4 (93,98) 70 72 ± 14.6 (48,100) 95 95 ± 1.4 (93,98)
85 82 ± 15.1 (54,100) 85 86 ± 2.2 (82,91) 85 83 ± 15.1 (53,100) 85 86 ± 2.2 (82,91)
85 84 ± 10.3 (66,100) 85 86 ± 1.7 (83,90) 95 89 ± 12.8 (61,100) 95 95 ± 1.4 (93,98)
85 85 ± 11.2 (64,100) 95 95 ± 1.3 (93,98) 85 85 ± 11.5 (63,100) 95 95 ± 1.2 (93,98)
95 86 ± 14.5 (57,100) 70 72 ± 3.6 (67,80) 95 86 ± 14.9 (56,100) 70 72 ± 3.5 (67,81)
95 89 ± 11.9 (63,100) 85 86 ± 2 (83,90) 95 89 ± 11.5 (65,100) 85 86 ± 2 (83,91)
95 92 ± 8.1 (74,100) 95 95 ± 1.1 (94,98) 95 92 ± 8.1 (75,100) 95 95 ± 1.1 (93,98)
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Table 3: Results of Simulation B: LCA in a La Joya-like population with verification bias (α = 0.2). True values of
each diagnostic test parameter are compared to estimates from a covariate-augmented LCA model with a variable risk
function. Each parameter estimate is presented as mean ± standard deviation (95% CI) of 1000 simulations. All values
are reported as percents.

True Estimated True Estimated True Estimated True Estimated
S1 S1 C1 C1 S2 S2 C2 C2
70 70 ± 22.2 (38,100) 70 72 ± 2.8 (67,79) 70 68 ± 18.1 (40,100) 70 73 ± 4.5 (65,83)
70 69 ± 13.2 (48,100) 70 71 ± 1.6 (67,74) 95 87 ± 14.9 (55,100) 95 96 ± 2.6 (91,100)
70 70 ± 17.5 (41,100) 95 95 ± 1 (93,97) 70 70 ± 10.3 (52,94) 95 96 ± 2.1 (91,100)
85 82 ± 16.3 (51,100) 85 85 ± 1.6 (82,89) 85 83 ± 10.8 (63,100) 85 86 ± 3 (81,92)
85 84 ± 12.1 (62,100) 85 85 ± 1.3 (83,88) 95 93 ± 8.2 (74,100) 95 95 ± 1.9 (92,100)
85 84 ± 13.3 (58,100) 95 95 ± 0.9 (93,97) 85 85 ± 7.9 (69,100) 95 95 ± 1.9 (92,99)
95 85 ± 14.2 (57,100) 70 71 ± 2.1 (67,76) 95 89 ± 10.5 (66,100) 70 72 ± 4.2 (65,82)
95 89 ± 12.3 (63,100) 85 85 ± 1.4 (83,88) 95 92 ± 7.8 (75,100) 85 86 ± 2.8 (81,92)
95 92 ± 9.5 (70,100) 95 95 ± 0.8 (94,97) 95 94 ± 5.5 (82,100) 95 96 ± 1.7 (92,99)
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Table 4: Results of Simulation C: LCA model with misspecified prevalence function that depends on age only. True
values of each diagnostic test parameter are compared to estimates from a misspecified covariate-augmented LCA model.
There was no verification bias (α = 1). Each parameter estimate is presented as mean ± standard deviation (95% CI) of
1000 simulations. All values are reported as percents.

True Estimated True Estimated True Estimated True Estimated
S1 S1 C1 C1 S2 S2 C2 C2
70 69 ± 19.1 (39,100) 70 71 ± 2.6 (67,76) 70 69 ± 18.9 (39,100) 70 71 ± 2.4 (67,76)
70 67 ± 6.9 (55,82) 70 71 ± 1.7 (68,75) 95 88 ± 16.3 (51,100) 95 96 ± 1.3 (94,99)
70 67 ± 12.3 (48,99) 95 95 ± 1.2 (93,98) 70 67 ± 11.8 (47,97) 95 96 ± 1.2 (93,98)
85 80 ± 13.1 (58,100) 85 86 ± 1.8 (83,90) 85 81 ± 13 (58,100) 85 86 ± 1.8 (83,90)
85 81 ± 8.5 (67,100) 85 86 ± 1.5 (83,89) 95 91 ± 10.6 (67,100) 95 96 ± 1.2 (93,98)
85 82 ± 9.9 (64,100) 95 95 ± 1.1 (93,98) 85 83 ± 10 (65,100) 95 95 ± 1.1 (93,98)
95 88 ± 11.5 (64,100) 70 71 ± 2.1 (68,76) 95 88 ± 11.1 (66,100) 70 71 ± 2.1 (68,76)
95 90 ± 9.8 (70,100) 85 86 ± 1.6 (83,89) 95 90 ± 9.6 (70,100) 85 86 ± 1.6 (83,89)
95 92 ± 7.4 (76,100) 95 95 ± 1 (94,97) 95 93 ± 7.3 (77,100) 95 95 ± 1 (94,97)
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Table 5: Results of Simulation D. Parameter estimates from linear (misspecified) and quadratic (correct) models are
presented as mean ± standard deviation (95% CI) of 1000 simulations. All values are reported as percents. The negative
of the natural logarithm of the model likelihood is also reported as mean ± standard deviation.

Linear model
True Estimated True Estimated True Estimated True Estimated
S1 S1 C1 C1 S2 S2 C2 C2 − ln(L)
70 66 ± 22.2 (36,100) 70 71 ± 2.6 (66,77) 70 67 ± 22.6 (35,100) 70 71 ± 2.7 (67,77) 1255 ± 16
70 63 ± 8.6 (49,82) 70 71 ± 2.2 (67,76) 95 79 ± 22.9 (36,100) 95 97 ± 1.3 (94,99) 946 ± 23
70 64 ± 15.8 (41,100) 95 96 ± 1.3 (93,98) 70 64 ± 15.5 (40,100) 95 96 ± 1.3 (93,98) 568 ± 29
85 76 ± 16.1 (49,100) 85 86 ± 1.9 (83,91) 85 76 ± 16.5 (48,100) 85 86 ± 2 (83,90) 956 ± 27
85 78 ± 11.5 (59,100) 85 86 ± 1.8 (83,90) 95 85 ± 15.5 (54,100) 95 96 ± 1.3 (94,99) 777 ± 30
85 80 ± 13.9 (55,100) 95 96 ± 1.2 (93,98) 85 79 ± 13.2 (57,100) 95 96 ± 1.3 (93,98) 578 ± 30
95 84 ± 14.7 (56,100) 70 72 ± 2.4 (68,77) 95 83 ± 14.9 (55,100) 70 72 ± 2.4 (68,77) 1268 ± 16
95 85 ± 13.7 (59,100) 85 86 ± 1.9 (83,90) 95 84 ± 14.2 (57,100) 85 86 ± 1.9 (83,90) 963 ± 27
95 89 ± 10.9 (66,100) 95 96 ± 1.2 (94,98) 95 89 ± 10.3 (67,100) 95 96 ± 1.1 (94,98) 578 ± 32

Quadratic model
70 72 ± 21.7 (37,100) 70 70 ± 2 (66,74) 70 72 ± 21.9 (37,100) 70 70 ± 2 (66,75) 1255 ± 16
70 70 ± 9.3 (54,90) 70 71 ± 1.8 (67,75) 95 85 ± 18.8 (44,100) 95 95 ± 1.1 (93,97) 944 ± 23
70 72 ± 14.1 (49,100) 95 95 ± 1 (93,97) 70 71 ± 13.8 (49,100) 95 95 ± 1.1 (93,97) 566 ± 29
85 84 ± 13.3 (57,100) 85 85 ± 1.5 (83,88) 85 84 ± 13.6 (57,100) 85 85 ± 1.6 (82,88) 954 ± 27
85 85 ± 9.6 (68,100) 85 85 ± 1.4 (83,88) 95 90 ± 11.6 (63,100) 95 95 ± 1.1 (93,97) 774 ± 30
85 85 ± 11.1 (64,100) 95 95 ± 1 (93,97) 85 85 ± 10.6 (65,100) 95 95 ± 1 (93,97) 575 ± 31
95 90 ± 12.2 (62,100) 70 70 ± 1.9 (67,74) 95 89 ± 12.5 (61,100) 70 70 ± 1.9 (67,74) 1267 ± 16
95 91 ± 10.1 (68,100) 85 85 ± 1.5 (83,88) 95 91 ± 10.4 (68,100) 85 85 ± 1.4 (83,88) 961 ± 27
95 93 ± 8 (76,100) 95 95 ± 1 (93,97) 95 93 ± 7.7 (75,100) 95 95 ± 0.9 (94,97) 574 ± 32
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Table 3 shows results from Simulation B. Compared to “Model1” from Sim-
ulation A (Table 2), in which there is no verification bias, the sensitivity estimates
from Simulation B have similar bias when the true sensitivity is 70%. Sensitivity
estimates from Simulation B are slightly more biased when the true sensitivity is
at least 85%. Standard deviations of the sensitivity estimates from Simulation B
are 28-83% higher than those of Simulation A. The biases and standard deviations
of the specificity estimates from Simulation B are similar to those of Simulation A
across all values of true specificity.

Results of Simulations C and D (Tables 4 and 5) demonstrate that when
the LCA model’s assumed prevalence function differs from truth, the bias and the
variance of the estimated diagnostic test parameters increase. However, the true
values of Si and Ci are still contained within the model’s 95% confidence intervals
for all combinations of sensitivity and specificity considered. Furthermore, in these
populations with low disease prevalence, even the misspecified models estimate
Ci with small bias. In Table 5 we also present the mean value of − ln(L) for each
simulation. In 8 of 9 simulations the properly specified quadratic model has a larger
likelihood.

3.2 Results of Analysis of La Joya T. cruzi Data

Parameter estimates from our covariate-augmented LCA model applied to actual
Chagas disease diagnostic test data from La Joya, Peru, are shown in Table 6. All
estimates were calculated using the likelihood function with verification bias cor-
rection described in Section 2.2.1. The estimated specificities of ELISA and IFA
in La Joya are nearly 100%. In contrast, the point estimates of the sensitivities of
both tests are less than 80%. In the case of ELISA, however, the uncertainty is large
enough that a sensitivity as high as 100% cannot be ruled out.

The model’s estimates of the risk parameters βpre, βpost , βout , and K confirm
that the yearly risk of T. cruzi infection prior to the insecticide spray campaign (βpre)
was much greater than the post-spray risk, which was indistinguishable from zero.
The estimated infection prevalence in the population (found by averaging σn across
all subjects) is 13.4%.

The estimated positive predictive values of ELISA and IFA in patients who
tested positive on those assays are high (Figures 2A and 2B). Because of the tests’
high specificities in this population, most positive results represent true infections.
Furthermore, using IFA to confirm positive ELISA results does not often signifi-
cantly change the posterior probability of infection (Figures 2C and 2D).

The estimated sensitivity and specificity of ELISA and IFA are reduced
when the diagnostic tests are assumed to be conditionally dependent (Table 7). The
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Table 6: Parameter estimates and bootstrap confidence intervals from our latent
class model with continuous covariates, applied to T. cruzi test data from La Joya,
Peru.

Parameter Model estimate (95% CI)
ELISA sensitivity (S1) 78% (62-100%)
ELISA specificity (C1) 100% (99-100%)
IFA sensitivity (S2) 73% (65-81%)
IFA specificity (C2) 99% (96-100%)
Pre-spray risk parameter (βpre) 0.019 (0.013-0.026)
Post-spray risk parameter (βpost) 0 (0-0.0005)
Parameter for risk outside La Joya (βout) 0.0031 (0.0016-0.0050)
Congenital transmission parameter (K) 0.0047 (0-0.014)

sensitivities of ELISA and IFA are as low as 67% and 58%, respectively, when
covs12 and covc12 are at most 0.05. Larger covariances of up to 0.1 produce esti-
mates of ELISA sensitivity as low as 47% and IFA sensitivity as low as 38%. With
regards to specificity, the model predicts that ELISA and IFA are at least 88% spe-
cific even if the covariance between the tests is as high as 0.1. Covariances larger
than 0.1 produce even smaller sensitivity and specificity estimates.

4 Discussion
When estimating the sensitivity and specificity of diagnostic tests, the analyzed test
results are often stripped of epidemiologic context. By treating all identical patterns
of results as equivalent, algorithms such as latent class analysis may ignore vital
information about differences between tested individuals. Many previous attempts
to incorporate epidemiologic information into LCA have utilized two-tiered risk
stratifications based on geographic location (Branscum et al., 2005, Hui and Walter,
1980, Johnson et al., 2001). If the probability of disease varies in a more complex
manner, we show that careful measurement of individual-level risk allows LCA to
estimate diagnostic test parameters more accurately.

With respect to Chagas disease in La Joya, Arequipa, Peru, our model es-
timates the specificity of the commercial Chagatek ELISA to be 100% (95% CI:
99-100%). Published Chagatek specificities from other sources range from 87.31-
100% (Blejer et al., 2001, Caballero et al., 2007). Our estimate is at the high end of
this range. We estimate the specificity of IFA to be 99% (95% CI: 96-100%). The
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Figure 2: Covariate-augmented latent class estimates of positive predictive values of
ELISA and IFA in La Joya, Arequipa, Peru. (A) and (B) Positive predictive value of
each diagnostic test when used alone. (C) and (D) Positive predictive value of both
possible outcomes when IFA was used as a confirmatory test in ELISA-positive
individuals.

specificity of T. cruzi serum tests can be lowered by cross-reactivity with Leishma-
nia spp. or Trypanosoma rangeli (Caballero et al., 2007, Malchiodi et al., 1994).
Thus the near-perfect specificity that we observe in La Joya may reflect the fact that
neither T. rangeli nor Leishmania spp. is endemic to the area (Levy et al., 2009,
Lucas et al., 1998).

Our estimate of ELISA sensitivity is 78% (95% CI: 62-100%), much lower
than other published estimates which range from 99.67-100% (Blejer et al., 2001,
Caballero et al., 2007), although the upper end of our confidence interval includes
these values. We also find a low sensitivity of 73% (95% CI: 65-81%) in the con-
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Table 7: Analysis of the effect of conditional dependence on estimates of diagnostic
test performance in La Joya. We maximized the likelihood of the model for nine dif-
ferent sets of covariances (column 1). Columns 2-5 give the maximum-likelihood
estimates and bootstrap 95% confidence intervals of the diagnostic test sensitivities
and specificities (expressed as percents) when these covariances are assumed.

S1 C1 S2 C2
(covs12, covc12) (95% CI) (95% CI) (95% CI) (95% CI)
(0, 0) 78 (62,100) 100 (99,100) 73 (65,81) 99 (96,100)
(0, 0.05) 74 (56,100) 94 (94,95) 65 (55,81) 93 (91,95)
(0, 0.1) 55 (44,100) 89 (88,89) 54 (42,79) 89 (85,89)
(0.05, 0) 71 (55,93) 100 (99,100) 66 (58,75) 99 (96,100)
(0.05, 0.05) 67 (48,93) 94 (94,95) 58 (49,75) 93 (91,95)
(0.05, 0.1) 49 (36,91) 88 (88,89) 46 (35,76) 88 (85,89)
(0.1, 0) 63 (46,86) 100 (99,100) 57 (48,71) 99 (95,100)
(0.1, 0.05) 60 (43,84) 94 (94,95) 50 (41,70) 93 (90,95)
(0.1, 0.1) 47 (36,83) 88 (87,89) 38 (29,68) 88 (85,89)
(0.15, 0.15) 79 (33,80) 79 (78,82) 72 (29,79) 79 (78,82)
(0.2, 0.2) 31 (30,32) 54 (51,72) 29 (28,30) 44 (42,72)

firmatory IFA test. Our low sensitivity estimates corroborate a recent report that
recombinant antigen-based rapid tests for Chagas disease exhibit much lower sen-
sitivity in Arequipa than in Bolivia (Verani et al., 2009). The decreased sensitivities
observed in Arequipa may be due to parasite heterogeneity, as the species T. cruzi
is known to include various strains whose different antigenic properties may cause
geographic variations in the performance of antigen-based diagnostic tests (Verani
et al., 2009, Campbell et al., 2004).

Our simulations, as well as our analysis of actual Chagas disease test results,
produce sensitivity estimates whose confidence intervals are much wider than those
of the specificity estimates. Although verification bias has been shown to increase
the variability of parameter estimates, our Simulation A (Table 2), in which all
individuals underwent both diagnostic tests, demonstrates that the uncertainty in our
sensitivity estimates is not entirely due to verification bias. Rather, our sensitivity
estimates are uncertain because of the low disease prevalence in our samples. When
prevalence is low, there are few subjects with positive test results, and thus it is
difficult to estimate the rate of true positives (i.e., sensitivity) (Joseph et al., 1995).

Use of our technique requires a mathematical description of risk variability.
In our study population, we chose a biologically plausible risk model that fits the
observed test results better than several other candidate functions (Delgado et al.,
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2011). However, the true risk function is always unknowable, and even the best-
fit model may not perfectly represent reality. Thus when applying our method to
other disease states, care should be taken to verify the suitability of the proposed
risk model. One way to do so is to create various risk functions and choose the one
that maximizes a model selection criterion such as the Akaike Information Criterion
(Akaike, 1974). Our simulations of misspecified models (Tables 4 and 5) show that
in cases where the true risk function is unknown, a selection criterion based on the
LCA likelihood could be used to choose between candidate prevalence functions.

Our primary results assume conditional independence between ELISA and
IFA, but we have also explored the sensitivity of our estimates to this assumption.
Addition of conditional dependence to the model reduces the estimated diagnostic
test sensitivity and specificity. The sensitivity estimates are affected more than the
specificity estimates. Although we cannot rule out the possibility of conditional
dependence between ELISA and IFA, there is reason to believe that any covariance
is likely to be small. A previous latent class analysis of Chagas disease diagnostic
tests (including ELISA and IFA) found that a conditional independence model fit
best (Pirard et al., 2005). And the choice of a conditional independence model is
further justified by the observation, mentioned above, that Arequipa lacks cross-
reacting organisms that could cause correlated false-positive results on multiple
assays.

Similarly, throughout this paper we have assumed that diagnostic test sen-
sitivity and specificity are constant across all subpopulations. Although beyond the
scope of our current analysis, this assumption could in principle be relaxed. The
model presented here could easily be expanded to include covariate effects on sen-
sitivity and specificity, in addition to disease prevalence.

The observed lack of sensitivity of T. cruzi diagnostic tests in Arequipa is
clinically problematic. Current protocols, which require two consecutive positive
test results on different assays before treatment is initiated, exclude many infected
individuals from consideration for pharmacological therapy. The magnitude of the
undercount can be estimated by noting that our model predicts a T. cruzi infection
prevalence of 13.4% in La Joya. In contrast, a much lower prevalence estimate of
101/1318 = 7.7% is produced when only ELISA+/IFA+ individuals are considered
to be infected. This latter case definition was used in a previous analysis of T.
cruzi transmission in La Joya, which explains why the predominant risk parameters
measured in that study were roughly half as large as our estimates (Delgado et al.,
2011).

Because the specificity of ELISA is very high in Arequipa, using IFA (or an-
other test) to confirm positive ELISA results does little more than increase the rate
of false negative. ELISA-positive individuals almost certainly represent true cases
(Figure 2). The probability of infection remains high even if the subsequent IFA is
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negative. These findings are consistent with a recent report that ELISA+/IFA- indi-
viduals in Arequipa are geographically clustered around confirmed (ELISA+/IFA+)
cases, making it likely that individuals with discordant results are in fact infected
with T. cruzi (Levy et al., 2009). We suggest that clinical resources could be saved
by reconsidering the need for confirmatory tests in ELISA-positive patients in set-
tings with a reasonably high probability of infection. By analyzing diagnostic tests
in context it may be possible to reduce expenses, which is particularly important
when diagnosing neglected tropical diseases.
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