9 research outputs found

    Differential expression of genes mapping to recurrently abnormal chromosomal regions characterize neuroblastic tumours with distinct ploidy status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastic tumours (NBTs) represent a heterogeneous spectrum of neoplastic diseases associated with multiple genetic alterations. Structural and numerical chromosomal changes are frequent and are predictive parameters of NBTs outcome. We performed a comparative analysis of the biological entities constituted by NBTs with different ploidy status.</p> <p>Methods</p> <p>Gene expression profiling of 49 diagnostic primary NBTs with ploidy data was performed using oligonucleotide microarray. Further analyses using Quantitative Real-Time Polymerase Chain Reaction (Q-PCR); array-Comparative Genomic Hybridization (aCGH); and Fluorescent <it>in situ </it>Hybridization (FISH) were performed to investigate the correlation between aneuploidy, chromosomal changes and gene expression profiles.</p> <p>Results</p> <p>Gene expression profiling of 49 primary near-triploid and near-diploid/tetraploid NBTs revealed distinct expression profiles associated with each NBT subgroup. A statistically significant portion of genes mapped to 1p36 (<it>P </it>= 0.01) and 17p13-q21 (<it>P </it>< 0.0001), described as recurrently altered in NBTs. Over 90% of these genes showed higher expression in near-triploid NBTs and the majority are involved in cell differentiation pathways. Specific chromosomal abnormalities observed in NBTs, 1p loss, 17q and whole chromosome 17 gains, were reflected in the gene expression profiles. Comparison between gene copy number and expression levels suggests that differential expression might be only partly dependent on gene copy number. Intratumoural clonal heterogeneity was observed in all NBTs, with marked interclonal variability in near-diploid/tetraploid tumours.</p> <p>Conclusion</p> <p>NBTs with different cellular DNA content display distinct transcriptional profiles with a significant portion of differentially expressed genes mapping to specific chromosomal regions known to be associated with outcome. Furthermore, our results demonstrate that these specific genetic abnormalities are highly heterogeneous in all NBTs, and suggest that NBTs with different ploidy status may result from different mechanisms of aneuploidy driving tumourigenesis.</p

    Differential expression of genes mapping to recurrently abnormal chromosomal regions characterize neuroblastic tumours with distinct ploidy status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastic tumours (NBTs) represent a heterogeneous spectrum of neoplastic diseases associated with multiple genetic alterations. Structural and numerical chromosomal changes are frequent and are predictive parameters of NBTs outcome. We performed a comparative analysis of the biological entities constituted by NBTs with different ploidy status.</p> <p>Methods</p> <p>Gene expression profiling of 49 diagnostic primary NBTs with ploidy data was performed using oligonucleotide microarray. Further analyses using Quantitative Real-Time Polymerase Chain Reaction (Q-PCR); array-Comparative Genomic Hybridization (aCGH); and Fluorescent <it>in situ </it>Hybridization (FISH) were performed to investigate the correlation between aneuploidy, chromosomal changes and gene expression profiles.</p> <p>Results</p> <p>Gene expression profiling of 49 primary near-triploid and near-diploid/tetraploid NBTs revealed distinct expression profiles associated with each NBT subgroup. A statistically significant portion of genes mapped to 1p36 (<it>P </it>= 0.01) and 17p13-q21 (<it>P </it>< 0.0001), described as recurrently altered in NBTs. Over 90% of these genes showed higher expression in near-triploid NBTs and the majority are involved in cell differentiation pathways. Specific chromosomal abnormalities observed in NBTs, 1p loss, 17q and whole chromosome 17 gains, were reflected in the gene expression profiles. Comparison between gene copy number and expression levels suggests that differential expression might be only partly dependent on gene copy number. Intratumoural clonal heterogeneity was observed in all NBTs, with marked interclonal variability in near-diploid/tetraploid tumours.</p> <p>Conclusion</p> <p>NBTs with different cellular DNA content display distinct transcriptional profiles with a significant portion of differentially expressed genes mapping to specific chromosomal regions known to be associated with outcome. Furthermore, our results demonstrate that these specific genetic abnormalities are highly heterogeneous in all NBTs, and suggest that NBTs with different ploidy status may result from different mechanisms of aneuploidy driving tumourigenesis.</p

    BCL3-rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases

    Full text link
    The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively

    LAG3 genotype of the donor and clinical outcome after allogeneic transplantation from HLA-identical sibling donors

    Get PDF
    IntroductionThe association of polymorphisms in molecules involved in the immune response (checkpoint inhibitors) with the clinical outcome after allogeneic transplantation (alloHSCT) has been described. Lymphocyte Activation 3 (LAG3) is a surface protein that plays a regulatory role in immunity as an inhibitory immune checkpoint molecule.MethodsTo determine its role in the alloHSCT setting, we analyzed 797 patients transplanted from HLA-identical sibling donors. The LAG3 rs870849 C&gt;T polymorphism was genotyped in donors.ResultsWe detected a higher incidence of severe acute GVHD in patients transplanted from donors with TT genotype (p: 0.047, HR 1.64; 95% CI 1.01 – 2.67). Overall survival (OS) was worse for patients transplanted from donors with the rs870849 CT/TT genotype (0.020; HR, 1.44; 95% CI 1.06 – 1.96), as well as disease-free survival (DFS) (p: 0.002; HR 1.58, 95%CI: 1.18 – 2.14) and transplant-related mortality (TRM) (p&lt; 0.001; HR: 1.88, 95% CI 1.29 – 2.74). When combining the LAG3 rs870849 and the PDCD1 rs36084323 genotypes of the donor, three genetic groups were well defined, allowing a good stratification of the risk of acute GVHD, TRM, OS and DFS.DiscussionWe conclude that the LAG3 genotype of the donor may be considered in donors’ selection. As this selection may be limited in the HLA-identical sibling donor scenario, further studies exploring the impact of LAG3 genotype of the donor in unrelated transplantation are warranted

    Idiopathic hypereosinophilic syndrome in children: report of a 7-year-old boy with FIP1L1-PDGFRA rearrangement

    No full text
    Idiopathic hypereosinophilic syndrome (HES) in children is a very rare disorder; certain clinical differences with adult HES have been described, with no pediatric case with the imatinib-responsive FIP1L1-PDGFRA fusion gene reported to date. The authors describe the clinical course of three children with HES in whom FIP1L1-PDGFRA fusion gene was studied and report the first child with this rearrangement

    p53 abnormalities in splenic lymphoma with villous lymphocytes

    No full text
    The incidence and role of p53 abnormalities have not been reported in splenic lymphoma with villous lymphocytes (SLVL), the leukemic counterpart of splenic marginal zone lymphoma. Because p53 abnormalities correlate with progressive and refractory disease in cancer and isochromosome 17q has been described in SLVL, a low-grade lymphoma that behaves aggressively in a minority of patients, this study investigated p53 changes by molecular and immunophenotypic methods in sample

    BCL3 rearrangements in B-cell lymphoid neoplasms occur in two breakpoint clusters associated with different diseases

    Get PDF
    The t(14;19)(q32;q13) often juxtaposes BCL3 with immunoglobulin heavy chain (IGH) resulting in overexpression of the gene. In contrast to other oncogenic translocations, BCL3 rearrangement (BCL3-R) has been associated with a broad spectrum of lymphoid neoplasms. Here we report an integrative whole-genome sequence, transcriptomic, and DNA methylation analysis of 13 lymphoid neoplasms with BCL3-R. The resolution of the breakpoints at single base-pair revealed that they occur in two clusters at 5' (n=9) and 3' (n=4) regions of BCL3 associated with two different biological and clinical entities. Both breakpoints were mediated by aberrant class switch recombination of the IGH locus. However, the 5' breakpoints (upstream) juxtaposed BCL3 next to an IGH enhancer leading to overexpression of the gene whereas the 3' breakpoints (downstream) positioned BCL3 outside the influence of the IGH and were not associated with its expression. Upstream BCL3-R tumors had unmutated IGHV, trisomy 12, and mutated genes frequently seen in chronic lymphocytic leukemia (CLL) but had an atypical CLL morphology, immunophenotype, DNA methylome, and expression profile that differ from conventional CLL. In contrast, downstream BCL3-R neoplasms were atypical splenic or nodal marginal zone lymphomas (MZL) with mutated IGHV, complex karyotypes and mutated genes typical of MZL. Two of the latter four tumors transformed to a large B-cell lymphoma. We designed a novel fluorescence in situ hybridization assay that recognizes the two different breakpoints and validated these findings in 17 independent tumors. Overall, upstream or downstream breakpoints of BCL3-R are mainly associated with two subtypes of lymphoid neoplasms with different (epi)genomic, expression, and clinicopathological features resembling atypical CLL and MZL, respectively
    corecore