1,527 research outputs found

    The galaxy cluster X-ray luminosity--gravitational mass relation in the light of the WMAP 3rd year data

    Get PDF
    The 3rd year WMAP results mark a shift in best fit values of cosmological parameters compared to the 1st year data and the concordance cosmological model. We test the consistency of the new results with previous constraints on cosmological parameters from the HIFLUGCS galaxy cluster sample and the impact of this shift on the X-ray luminosity-gravitational mass relation. The measured X-ray luminosity function combined with the observed luminosity-mass relation are compared to mass functions predicted for given cosmological parameter values. The luminosity function and luminosity-mass relation derived previously from HIFLUGCS are in perfect agreement with mass functions predicted using the best fit parameter values from the 3rd year WMAP data (OmegaM=0.238, sigma8=0.74) and inconsistent with the concordance cosmological model (OmegaM=0.3, sigma8=0.9), assuming a flat Universe. Trying to force consistency with the concordance model requires artificially decreasing the normalization of the luminosity-mass relation by a factor of 2. The shift in best fit values for OmegaM and sigma8 has a significant impact on predictions of cluster abundances. The new WMAP results are now in perfect agreement with previous results on the OmegaM-sigma8 relation determined from the mass function of HIFLUGCS clusters and other X-ray cluster samples (the ``low cluster normalization''). We conclude that - unless the true values of OmegaM and sigma8 differ significantly from the 3rd year WMAP results - the luminosity-mass relation is well described by their previous determination from X-ray observations of clusters, with a conservative upper limit on the bias factor of 1.5. These conclusions are currently being tested in a complete follow-up program of all HIFLUGCS clusters with Chandra and XMM-Newton.Comment: 4 pages; A&A Letters, in press; replaced to match accepted version; also available at http://www.reiprich.ne

    XO-2b: a hot Jupiter with a variable host star that potentially affects its measured transit depth

    Full text link
    The transiting hot Jupiter XO-2b is an ideal target for multi-object photometry and spectroscopy as it has a relatively bright (VV-mag = 11.25) K0V host star (XO-2N) and a large planet-to-star contrast ratio (Rp_{p}/Rs0.015_{s}\approx0.015). It also has a nearby (31.21") binary stellar companion (XO-2S) of nearly the same brightness (VV-mag = 11.20) and spectral type (G9V), allowing for the characterization and removal of shared systematic errors (e.g., airmass brightness variations). We have therefore conducted a multiyear (2012--2015) study of XO-2b with the University of Arizona's 61" (1.55~m) Kuiper Telescope and Mont4k CCD in the Bessel U and Harris B photometric passbands to measure its Rayleigh scattering slope to place upper limits on the pressure-dependent radius at, e.g., 10~bar. Such measurements are needed to constrain its derived molecular abundances from primary transit observations. We have also been monitoring XO-2N since the 2013--2014 winter season with Tennessee State University's Celestron-14 (0.36~m) automated imaging telescope to investigate stellar variability, which could affect XO-2b's transit depth. Our observations indicate that XO-2N is variable, potentially due to {cool star} spots, {with a peak-to-peak amplitude of 0.0049±0.00070.0049 \pm 0.0007~R-mag and a period of 29.89±0.1629.89 \pm 0.16~days for the 2013--2014 observing season and a peak-to-peak amplitude of 0.0035±0.00070.0035 \pm 0.0007~R-mag and 27.34±0.2127.34 \pm 0.21~day period for the 2014--2015 observing season. Because of} the likely influence of XO-2N's variability on the derivation of XO-2b's transit depth, we cannot bin multiple nights of data to decrease our uncertainties, preventing us from constraining its gas abundances. This study demonstrates that long-term monitoring programs of exoplanet host stars are crucial for understanding host star variability.Comment: published in ApJ, 9 pages, 11 figures, 3 tables; updated figures with more ground-based monitoring, added more citations to previous work

    Fundamental Properties of Cool Stars with Interferometry

    Full text link
    We present measurements of fundamental astrophysical properties of nearby, low-mass, K- and M-dwarfs from our DISCOS survey (DIameterS of COol Stars). The principal goal of our study is the determination of linear radii and effective temperatures for these stars. We calculate their radii from angular diameter measurements using the CHARA Array and Hipparcos distances. Combined with bolometric flux measurements based on literature photometry, we use our angular diameter results to calculate their effective surface temperatures. We present preliminary results established on an assortment of empirical relations to the stellar effective temperature and radius that are based upon these measurements. We elaborate on the discrepancy seen between theoretical and observed stellar radii, previously claimed to be related to stellar activity and/or metallicity. Our preliminary conclusion, however, is that convection plays a larger role in the determination of radii of these late-type stars. Understanding the source of the radius disagreement is likely to impact other areas of study for low-mass stars, such as the detection and characterization of extrasolar planets in the habitable zones.Comment: Contribution to Proceedings of Cool Stars 16 Workshop; 8 pages in ASP format; 9 figure

    Book Reviews

    Get PDF

    The cosmological analysis of X-ray cluster surveys: I- A new method for interpreting number counts

    Full text link
    We present a new method aiming to simplify the cosmological analysis of X-ray cluster surveys. It is based on purely instrumental observable quantities, considered in a two-dimensional X-ray colour-magnitude diagram (hardness ratio versus count-rate). The basic principle is that, even in rather shallow surveys, substantial information on cluster redshift and temperature is present in the raw X-ray data and can be statistically extracted; in parallel, such diagrams can be readily predicted from an ab initio cosmological modeling. We illustrate the methodology for the case of a 100 deg2 XMM survey having a sensitivity of ~10^{-14} ergs/s/cm^2 and fit at the same time, the survey selection function, the cluster evolutionary scaling-relations and the cosmology; our sole assumption -- driven by the limited size of the sample considered in the case-study -- is that the local cluster scaling relations are known. We devote special care to the realistic modeling of the count-rate measurement uncertainties and evaluate the potential of the method via a Fisher analysis. In the absence of individual cluster redshifts, the CR-HR method appears to be much more efficient than the traditional approach based on cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts are available, our method performs similarly as the traditional mass function (dn/dM/dz) for the purely cosmological parameters, but better constrains parameters defining the cluster scaling relations and their evolution. A further practical advantage of the CR-HR method is its simplicity : this fully top-down approach totally bypasses the tedious steps consisting in deriving cluster masses from X-ray temperature measurements.Comment: 18 pages, 15 figures, 3 tables. Accepted for publication in MNRAS (minor changes with respect to previous version

    Topological defects and shape of aromatic self-assembled vesicles

    Get PDF
    We show that the stacking of flat aromatic molecules on a curved surface results in topological defects. We consider, as an example, spherical vesicles, self-assembled from molecules with 5- and 6-thiophene cores. We predict that the symmetry of the molecules influences the number of topological defects and the resulting equilibrium shape.Comment: accepted as a Letter in the J. Phys. Chem.

    Orbital Elements and Stellar Parameters of the Active Binary UX Arietis

    Get PDF
    This is the final version of the article. Available from American Astronomical Society via the DOI in this record.Stellar activity observed as large surface spots, radio flares, or emission lines is often found in binary systems. UX Arietis exhibits these signs of activity, originating on the K0 subgiant primary component. Our aim is to resolve the binary, measure the orbital motion, and provide accurate stellar parameters such as masses and luminosities to aid in the interpretation of the observed phenomena. Using the CHARA six-telescope optical long-baseline array on Mount Wilson, California, we obtained amplitudes and phases of the interferometric visibility on baselines up to 330 m in length, resolving the two components of the binary. We reanalyzed archival Center for Astrophysics spectra to disentangle the binary component spectra and the spectrum of the third component, which was resolved by speckle interferometry. We also obtained new spectra with the Nordic Optical Telescope, and we present new photometric data that we use to model stellar surface spot locations. Both interferometric visibilities and spectroscopic radial velocities are modeled with a spotted primary stellar surface using the Wilson–Devinney code. We fit the orbital elements to the apparent orbit and radial velocity data to derive the distance (52.1 ± 0.8 pc) and stellar masses (MP = 1.30 0.06 M, MS = 1.14 0.06 M). The radius of the primary can be determined to be RP = 5.6 0.1 R and that of the secondary to be RS = 1.6 0.2 R. The equivalent spot coverage of the primary component was found to be 62% with an effective temperature 20% below that of the unspotted surface.We thank Robert Wilson (University of Florida) for providing a custom version of his code to compute images of spotted stellar surfaces and for his help with using it. This work is based upon observations obtained with the Georgia State University (GSU) Center for High Angular Resolution Astronomy (CHARA) array at Mount Wilson Observatory. The CHARA array is supported by the National Science Foundation under grant numbers AST-1211929 and AST-1411654. Institutional support has been provided by the GSU College of Arts and Sciences and the GSU Office of the Vice President for Research and Economic Development. The MIRC instrument at the CHARA array was funded by the University of Michigan. F.B., R.R., and J.D.M. acknowledge support from NSF-AST 1210972 and 1108963. G.T. acknowledges partial support from NSF grant AST-1509375. S.K. acknowledges support from an STFC Rutherford Fellowship (ST/J004030/1) and ERC Starting Grant (grant agreement no. 639889). This work is also based on observations made with the Nordic Optical Telescope (NOT), operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias. This research has made use of the SIMBAD database, operated at the CDS, Strasbourg, France. This research has made use of the Jean-Marie Mariotti Center SearchCal service13 codeveloped by FIZEAU and LAOG/IPAG and of the CDS astronomical databases SIMBAD and VIZIER.14 This research has made use of the Washington Double Star Catalog, maintained at the U.S. Naval Observatory. We thank Nicholas Elias II for discussions. We thank Dimitri Pourbaix for maintaining and providing access to the SB9 database of RV measurements of spectroscopic binaries
    corecore