
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

The following full text is an author's version which may differ from the publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/75646

 

 

 

Please be advised that this information was generated on 2017-12-06 and may be subject to

change.

http://hdl.handle.net/2066/75646


arX
iv:

090
7.1

842
v! 

[co
nd-

ma
t.so

ft] 
10 

Jul 
200

9

O. V. M anyuhina, A. Fasolino and M. I. K atsnelson
Institute fo r  Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135,

6525 A J  Nijmegen, The Netherlands
A b stract

We show th a t the stacking of flat arom atic molecules on a curved surface results in topological 
defects. We consider, as an example, spherical vesicles, self-assembled from molecules with 5- 
and 6-thiophene cores. We predict th a t the sym m etry of the molecules influences the number 
of topological defects and the resulting equilibrium shape.

Engineering of molecular assemblies is one of the aims of modern nanotechnology. Here, starting 
from ideas put forward by Nelson, MacKintosh and Lubensky for liquid crystals [1, 2, 3] we show 
that topological defects can determine the shape of supramolecular vesicles[4]. Recently, Nelson [1] 
proposed an elegant way to generate topological defects by coating spherical colloidal particle with 
anisotropic object like nematic liquid crystals. The high-energy core of defects can be used as sites 
for chemical activity and as potential spots for the assembly of three dimensional architectures. 
Further, the classical works [2, 3] relate the appearance of topological defects in lipid bilayers to 
the temperature-induced phase transition from the Sm-A phase to the Sm-C phase with tilted 
molecules.
In the last decades supramolecular chemistry has created large aromatic molecules that form a a 
variety of nanometer sized structures [5, 6]. Here we demonstrate that packing of flat aromatic 
molecules on a curved surface, e.g. on a sphere, results in unavoidable topological defects, similar 
to those considered by Nelson. Unlike colloidal particles and two dimensional spherical crystals [7, 
8], the defects in aromatic self-assemblies could influence the geometry and the topology of the 
structure as a whole. Therefore, we allow spherical vesicles to deform towards spheroids in order 
to determine the minimum energy configuration.
As an example, consider the bolaamphiphilic sexithiophene (6T) molecules [6, 9] known to self- 
assemble in propanol-2 into spherical vesicles with radius of the order of 100 nm. The aromatic 6T 
core can be thought of as a flat plaquette1 (see Fig. 1a,b). Consider now the regular arrangement 
of flat plaquettes on a curved surface, e.g. a spherical cap (see Fig. 1c): every plaquette can be 
described by a director (headless vector) normal to the plane of the plaquette and thus tangent 
to a sphere. The hairy ball theorem (or generalized Poincare-Hopf theorem) states that there is 
no nonvanishing continuous tangent (vector) field on a sphere. This means that we cannot pack 
flat molecules on a sphere without creating a topological defect, namely, a point around which 
the tangent field rotates by 2nq, with q an integer or half-integer number, like the one shown in 
Fig. 1c. The number of topological defects depends on the Euler characteristic of the surface and 
on the intrinsic symmetry of the self-assembled molecules. The 6T core, enclosed in a rectangle, 
has 2/m  lattice symmetry[10], which means that there are no invariant vectors in the plane of the 
molecule or that there is inversion symmetry. This defines a unique normal n to the plane of the 
plaquette which will be a tangent vector to a sphere. Instead, five-thiophene groups (5T) have 
mm2 point group transformations, which leave a vector v =  (x, 0, 0) invariant under symmetry 
operations. This additional symmetry of the core yields a director to the plane of the molecule 
with n  ^  —n. We may generalize our results to even and odd number of thiophene and benzene 
rings. For any aromatic molecule, it is always possible to assign either a true vector normal to the 
plaquette or a director. For the tangent vector field on a sphere, there are two topological defects 
with vorticity 2n (topological charge q =  +1), whereas for directors there are four defects with 
vorticity n (q =  +1/2) [1, 2]. Based on the example of 6T molecules, which can be generalized to
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1B olaam phiphile 2,5”” ’-(R-2-m ethyl-3,6,9,12,15-pentaoxahexadecyl ester) 6T has two polar ethylene oxide chains, 
which do not play any role in our consideration.
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Figure 1: (a) Aromatic molecules with six thiophene (6T) cores and five thiophene cores (5T) that 
can be thought of as flat plaquettes (b) Since for 6T there is no invariant vector v, the normal 
to the plane is a true vector n  in the z-direction. For 5T we can identify the invariant vector v 
(in x-direction), and thus there is a director n  ^  —n in the z-direction. (c) The arrangement of 
flat plaquettes on a spherical cap, resulting in a topological defect at the center. (d) The tangent 
vector field and two topological defects (thick dots) located at the north (N ) and the south (S) 
poles of a spheroid; c and a are the semiaxes of the spheroid.

any aromatic molecule with inversion symmetry, we consider in the following the interaction of two 
topological defects on surfaces with the topology of a sphere.
Like charged particles, the defects interact with each other and with the Gaussian curvature as a 
background charge distribution [11, 12]. Taking into account the fact that self-assembled structures 
can adjust their shape in order to minimize the free energy, we allow deformations of the sphere 
towards spheroids. This feature is essentially different from the case of colloidal particles where the 
geometry is determined by the substrate [1]. The quantitative understanding of the energetics of 
topological defects interacting on spheroids involves the calculation of the Green function r (x ^  Xj), 
which is the inverse of the Laplace-Beltrami operator on spheroids [1, 7]. This is a non-trivial 
problem, which can be solved through the conformal mapping of the complex surface onto a simple 
one, e.g. plane or sphere, where the Green function is known [12].
To quantify the effect of topological defects we calculate the total free energy Ftotal as the sum of 
bending energy Fbend and of the energy associated with topological defects Fdefect on spheroids, 
namely

Ftotal =  Fbend +  ^defect =  2k J J d S  H 2 +  4n2KAQiQjr(x i, Xj), (1)
where H  is the mean curvature, k is the bending rigidity, and K a  is hexatic constant [2, 13]. 
For every point of the surface one can define the two principal curvatures ki and k2. The mean 
curvature H  =  (ki +  k2)/2  at a given point depends on the change of the normal vector around 
this point, characterizing the local properties of the surface. The Gaussian curvature K  =  k ik 2,
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Figure 2: (a) The normalized free energy Ftotal/ (nk) as function of c/a  (the axes of the spheroid, see 
Fig. 1d) in logarithmic x-scale. The surface area of the vesicle is kept constant, assuming constant 
density of the molecules. The minimum of Ftotal, corresponding to a sphere c =  a for K a =  0, shifts 
towards higher values of c/a  with hexatic constant K a compared to k. For the ratio K a /k  =  1.2 
we expect an instability towards rod-like structures. (b) The equilibrium shapes marked with the 
thick dots on the plot.

instead, is an intrinsic property of the surface defined only by its metric, and its integral over a 
smooth surface ƒ  dS K  is related by Gauss-Bonnet theorem [14] to the Euler characteristic x, which 
determines the topology of the surface. Since we consider spheroids with x  =  2, the integral over 
K  is constant and therefore it is not included in Eq. (1). The non-local (long-ranged) interactions 
of the defects are described by the Green function r(x¿, Xj), which depends only on the metric 
of the surface. The competition between two terms in Eq. (1) leads to frustration, because the 
defects favour high Gaussian curvature [11], which inevitably leads to high mean curvature (due to 
H 2 ^  K ), and consequently to an increase of the bending energy Fbend. Because of the repulsive 
nature of defect interactions, the minimum of the second term corresponds to defects located at the 
north (N ) and the south (S) poles of a spheroid for a tangent vector field (see Fig. 1d), and at the 
vertices of a tetrahedron for a director field [2]. The topological defects in self-assemblies account 
for the competition between local interactions of aromatic cores and the topological constraints, 
whereas the details of microscopic potentials reside in the bending rigidity k and the hexatic 
constant K a . In our system, the ratio K ^ /k  is the only governing parameter, related to details 
of intermolecular interactions for a given temperature. Although the value of the bending rigidity 
k =  (2.56 ±  0.8) ■ 10-21 J was found from experimental measurements of magnetic deformations of 
6T spherical vesicles in isopropanol [15], the value of the hexatic constant K a is a less accessible 
parameter. Assuming that n-n interactions between thiophene molecules give the main contribution 
to the values of k and K a we can roughly estimate the ratio KA/k based on the results of ab initio 
molecular orbitals calculations for different geometries of thiophene dimer [16, 17], yielding KA/k 
of the order of unity.
It turns out, that for the case of spheroid the expression for the total free energy Ftotal (Eq. (1)) 
can be given in simple analytical form as the function of c/a, the ratio of the semiaxes of spheroids,



with bending energy
7-, i / i  x o  i tanh 1 a / 1  —  (c/a)2 2  I f  2  \ )  , ,

end =  2kw(c/a) {  v / l -  (c/a) 2 +  + W W \  +  W i w )  }■ { >

and the Green function

r(0,7r) =  +  ̂ /-]~+7c7«Ftan_1 a/^T+7c7«F^- (3)

Note that since the Gaussian curvature at the poles is given by K  =  c2/a 4, r(0 , n) becomes more 
negative for increasing K . We plot in Fig. 2a the total free energy Ftotal for different values of 
KA/k as a function of c/a  with defects located at z =  c (N ) and z =  —c (S). In presence of 
topological defects, the equilibrium shapes, corresponding to the minimum of Ftotal, are shown for 
two values of KA/k (see Fig. 2b). When the contribution Fdefect is not dominant (Ka  < 0.6k) 
the equilibrium shapes are close to spherical, but for K a — k they are elongated with c/a  — 3.2. 
For small values of the bending rigidity (K a  > k) we expect an instability towards infinitely long 
tubular structures. A similar elongation of phospholipid vesicles has been predicted to occur as a 
function of tem perature at the phase transition between Sm-A phase and Sm-C phase [3]. Indeed, 
6T molecules in butanol, in contrast with isopropanol, were found to self-assemble into multiwalled 
cylindrycal structures [18]. The theory presented here holds only for single layered structures and 
thus we cannot establish a direct comparison with the experimental observations. Moreover, in real 
situations, parameters such as k depend also on the particular solvent [19].
In conclusion, we demonstrated that the stacking of flat aromatic molecules in self-assembled spher
ical vesicles leads to topological defects. The essential difference in symmetry between molecules 
with even and odd number of thiophene groups results in two and four topological defects, re
spectively. In the case of two interacting defects the equilibrium shape of vesicles turns out to 
be elongated. We believe that four defects at the vertices of a tetrahedron would hardly lead to 
an elongation, although a detailed analysis of four interacting defects is beyond the scope of this 
paper. In general, the question of how the shape of self-assembled structures is connected with 
the intrinsic properties, such as the symmetry, of the constituent molecules remains open. Here we 
proposed a simple geometric approach based on topological defects to establish this connection for 
molecules with thiophene/benzene aromatic cores. The proposed theory can be used to extract the 
value of KA/k from experimental observations of the shape of self-assembled aromatic molecules.
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1 Point groups for 6T and 5T
In Figure 1a we show two aromatic molecules (6T and 5T) with even and odd number of thiophene 
cores and the corresponding symmetry operations, which transform the molecule into itself. For 
two-dimensional rectangular lattice, like the one enclosing 6T and 5T molecules, the possible sym
metry operations are mirror-reflections across line, denoted by m. For 6T molecule, we can write 
the following symmetry operations which leave one point unmoved [10]

( l  \  ( - 1m z =  1 and 2z =  m x m y =  | —1 | . (4)

—1
Their product mxmymz =  —1 | , acting on a vector, results in the total inversion

—1
symmetry. For 5T molecule the point group is different, containing the operators

1 1 1
mz = 1  1 I , my = 1  —1 I , 2x =  my mz = 1  —1 | . (5)

These symmetry operations leave vector v =  (x, 0,0) invariant, which is not the case for 6T 
molecules. This result can be generalized to even and odd number of thiophene and benzene 
rings.

2 Conformal mapping
Let us consider a spheroid, which is a surface of revolution given by the following parametrization

x(u, v) =  (a sin v cos u, a sin v sin u, c cos v), 0 < v < n, 0 < u < 2n, (6)
with semiaxes c and a (see Figure 1d). Then, the metric of spheroid is given by

=  (a2 cos2v +  c2 sin2v) dv2 +  a2 sin2v du2. (7)
The mapping of spheroids onto a sphere with metric ds2 =  R2(d02 +  sin20d02) is said to be 
conformal if we can write

ds2 =  e2A(u) ds1, (8)
where e2A(u) is called the conformal factor, which varies with position u  =  {u, v} on spheroid. 
Because of the rotational symmetry u =  0 and conformal factor depends only on parameter v. By 
equating two metrics we find that

R Sin 6 d6 , / 0 c;2A(t,) =  9 . o , — ~  = ± d v \  cot2v + ^ .  9a2 sin2 v sin 6 V a2
By integrating both sides of the second equality we get

log f  tan ^  =  g(v) = —\ / —l  +  r]2 arctan ( ^  co  ̂v J _  |Qg +  ^/r?2 +  cot2 v), (10)
V V  V v n2 +  cot2 v J



n =  c /awhere
expression for t

Substituting sin 0 =  2 tan(0 /2 )/(1  +  tan2 0/2) into Eq. (9) we find the analytical 
he conformai factor

R2
2Â  =  ------------ ---------------  ( 11)a2 sin2v cosh2g(v) 

and the limit of interest
______  ______

lim X(v) =  log----- \ /  — 1 +  rj2 arctan —1 +  r]2. (12)a

3 Free energy
3.1 C ontribution from defects
The pair Green function for topological defects on deformed sphere can be defined similar as for 
superfluids in reference [12]

1 V- • 1
r(xi,xj) =  +  ̂ ( A(x*) +  A(xi))> (13)

where V -  is the distance between two defects on the sphere (the chord between two points!) and 
d is the core size of the defect 2. This representation of the Green function already includes both 
the interaction between defects (first term) and the position dependent self-energy of defect. In 
the case of two topological defects on sphere with topological charge qi =  q- =  +1, the minimum 
of Fdefect =  4n2KAqiqjr ( x ,  xj ) corresponds to the defects located at the north N  (v =  0) and the 
south S (v =  n) poles (see Figure 1d). It gives Vij =  2R, and together with Eqs. (12) and (13) we 
find the Green function

1 /, 2 ar(0,7r) =  ^log — +  V - 1  +  V2 arctan y - 1  +  rj2 j  , (14)

and consequently an analytical expression for Fdefect • In Figure 3 below we plot the Green function 
r(0 ,n )  and the Gaussian curvature K  as the function of n  As was expected, the Green function 
decreases with n, while the Gaussian curvature is increasing, resulting in the more negative r(0 ,n )  
and thus Fdefect for higher K , which is in agreement with a theory [11].

3.2 B ending energy
The bending energy proposed by Helfrich in [13] is written as

Fbend =  2 ^ y d S H 2, (15)

where H  is the mean curvature and the integral is over the surface S . For spheroids (Eq. 6)
dS = a sin v V a 2 cos2 v +  c2 sin2 vdudv,  (16)
H  = - ( ________^ ________+ __________ —_________ V  (17)

2 V V a 2 cos2 v + c2 sin2 v (a2 cos2 v + c2 sin2 v)3/2 J '
After some calculations, the integral in Eq. (15) can be simplified to the following form

t-. 2 i tanh-1 \ J l  —  T]2  2 1 /  2 \ \Fhend-2k7TV |  + _  +  _ ^ i  +  _ j | .  (18)

2 A t th is microscopic scale th e  continuum  theory  breaks, so d may be thought as a cut-off radius.
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Figure 3: (a) The Green function r(0 , n) given by Eq. (14). For this plot we choose the equilibrium 
radius of the vesicle R =  100 nm and the size of the core d =  3.5 Aas the equilibrium distance 
between thiophene cores. (b) The Gaussian curvature K  =  c2/ a 4 =  n2/ a 2 calculated at the poles, 
assuming the condition of constant surface (Eq. 19).

This energy term does not depend on the size of the vesicle only on the dimensionless parameter n. 
However, the Green function in Eq. (14) depends on the absolute value of the distance between the 
defects, therefore in all our calculations we assumed the condition of constant surface of spheroid

2/ 2 tanh 1 y/1  -  T]2
2S = 'lira 1 +  rj -------  i ----- =  const, (19)

yielding constant density of the molecules.

4 Estim ate of the ratio of K A/ k
We assume that for aromatic molecules this value is mainly determined by the long-ranged n
n interactions between aromatic rings, and not by extrinsic effect (e.g. solvent) as discussed 
in [17] for thiophene oligomers. Therefore, we propose to estimate the ratio K^/fc by using 
the results of quantum chemistry calculations for the binding energy of thiophene dimers with 
different relative orientations [16]. The basic idea is to associate the energy of the splay con
figuration of two N-thiophene molecules with the value of the bending rigidity k (see Fig. 4b 
below), and the value of hexatic constant K a with the rotation around the long axes of the 
molecule (see Fig. 4c below). Then, based on the calculated interaction energy for different 
geometries of thiophene dimers (configurations A, G, H  of Figure 2, Table 2 of reference [16]) 
we find k «  E total(G) — Etotal(A) =  -2 .05 — (-1.32) =  -0 .73 kcal/mol æ 5 ■ 10-21 J and 
K a «  Etotai(H) — Etotai(A) =  —2.28 — (—1.32) =  —0.96 kcal/mol, yielding KA/k æ 1.3.
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