914 research outputs found
Peat properties, dominant vegetation type and microbial community structure in a tropical peatland
Tropical peatlands are an important carbon store and source of greenhouse gases, but the microbial component, particularly community structure, remains poorly understood. While microbial communities vary between tropical peatland land uses, and with biogeochemical gradients, it is unclear if their structure varies at smaller spatial scales as has been established for a variety of peat properties. We assessed the abundances of PLFAs and GDGTs, two membrane spanning lipid biomarkers in bacteria and fungi, and bacteria and archaea, respectively, to characterise peat microbial communities under two dominant and contrasting plant species, Campnosperma panamensis (a broadleaved evergreen tree), and Raphia taedigera (a canopy palm), in a Panamanian tropical peatland. The plant communities supported similar microbial communities dominated by Gram negative bacteria (38.9–39.8%), with smaller but significant fungal and archaeal communities. The abundance of specific microbial groups, as well as the ratio of caldarchaeol:crenarchaeol, isoGDGT: brGDGTs and fungi:bacteria were linearly related to gravimetric moisture content, redox potential, pH and organic matter content indicating their role in regulating microbial community structure. These results suggest that tropical peatlands can exhibit significant variability in microbial community abundance even at small spatial scales, driven by both peat botanical origin and localised differences in specific peat properties
Organic Pollutants, Heavy Metals and Toxicity in Oil Spill impacted Salt Marsh Sediment Cores, Staten Island, New York City, USA
Sediment cores from Staten Island's salt marsh contain multiple historical oil spill events that impact ecological health. Microtox solid phase bioassay indicated moderate to high toxicity. Multiple spikes of TPH (6524 to 9586 mg/kg) and Σ16 PAH (15.5 to 18.9 mg/kg) were co-incident with known oil spills. A high TPH background of 400–700 mg/kg was attributed to diffuse sources. Depth-profiled metals Cu (1243 mg/kg), Zn (1814 mg/kg), Pb (1140 mg/kg), Ni (109 mg/kg), Hg (7 mg/kg), Cd 15 (mg/kg) exceeded sediment quality guidelines confirming adverse biological effects. Changes in Pb206/207 suggested three metal contaminant sources and diatom assemblages responded to two contamination events. Organic and metal contamination in Saw Mill Creek Marsh may harm sensitive biota, we recommend caution in the management of the 20–50 cm sediment interval because disturbance could lead to remobilisation of pre-existing legacy contamination into the waterway
Selecting and modelling remnant AGNs with limited spectral coverage
Quantifying the energetics and lifetimes of remnant radio-loud active galactic nuclei (AGNs) is much more challenging than for active sources due to the added complexity of accurately determining the time since the central black hole switched off. Independent spectral modelling of remnant lobes enables the derivation of the remnant ratio, Rrem (i.e. 'off-time/source age'); however, the requirement of high-frequency (≳5 GHz) coverage makes the application of this technique over large-area radio surveys difficult. In this work, we propose a new method, which relies on the observed brightness of backflow of Fanaroff-Riley type II lobes, combined with the Radio AGN in Semi-Analytic Environments (RAiSE) code, to measure the duration of the remnant phase. Sensitive radio observations of the remnant radio galaxy J2253-34 are obtained to provide a robust comparison of this technique with the canonical spectral analysis and modelling methods. We find that the remnant lifetimes modelled by each method are consistent; spectral modelling yields Rrem = 0.23 ± 0.02, compared to Rrem = 0.26 ± 0.02 from our new method. We examine the viability of applying our proposed technique to low-frequency radio surveys using mock radio source populations, and examine whether the technique is sensitive to any intrinsic properties of radio AGNs. Our results show that the technique can be used to robustly classify active and remnant populations, with the most confident predictions for the remnant ratio, and thus off-time, in the longest lived radio sources (>50 Myr) and those at higher redshifts (z > 0.1)
Collider signals from slow decays in supersymmetric models with an intermediate-scale solution to the mu problem
The problem of the origin of the mu parameter in the Minimal Supersymmetric
Standard Model can be solved by introducing singlet supermultiplets with
non-renormalizable couplings to the ordinary Higgs supermultiplets. The
Peccei-Quinn symmetry is broken at a scale which is the geometric mean between
the weak scale and the Planck scale, yielding a mu term of the right order of
magnitude and an invisible axion. These models also predict one or more singlet
fermions which have electroweak-scale masses and suppressed couplings to MSSM
states. I consider the case that such a singlet fermion, containing the axino
as an admixture, is the lightest supersymmetric particle. I work out the
relevant couplings in several of the simplest models of this type, and compute
the partial decay widths of the next-to-lightest supersymmetric particle
involving leptons or jets. Although these decays will have an average proper
decay length which is most likely much larger than a typical collider detector,
they can occasionally occur within the detector, providing a striking signal.
With a large sample of supersymmetric events, there will be an opportunity to
observe these decays, and so gain direct information about physics at very high
energy scales.Comment: 24 pages, LaTeX, 4 figure
Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland
Tropical peatland ecosystems are a significant component of the global carbon cycle and feature a range of distinct vegetation types, but the extent of links between contrasting plant species, peat biogeochemistry and greenhouse gas fluxes remains unclear. Here we assessed how vegetation affects small scale variation of tropical peatland carbon dynamics by quantifying in situ greenhouse gas emissions over 1 month using the closed chamber technique, and peat organic matter properties using Rock-Eval 6 pyrolysis within the rooting zones of canopy palms and broadleaved evergreen trees. Mean methane fluxes ranged from 0.56 to 1.2 mg m−2 h−1 and were significantly greater closer to plant stems. In addition, pH, ranging from 3.95 to 4.16, was significantly greater closer to stems. A three pool model of organic matter thermal stability (labile, intermediate and passive pools) indicated a large labile pool in surface peat (35–42%), with equivalent carbon stocks of 2236–3065 g m−2. Methane fluxes were driven by overall substrate availability rather than any specific carbon pool. No peat properties correlated with carbon dioxide fluxes, suggesting a significant role for root respiration, aerobic decomposition and/or methane oxidation. These results demonstrate how vegetation type and inputs, and peat organic matter properties are important determinants of small scale spatial variation of methane fluxes in tropical peatlands that are affected by climate and land use change
The Seyfert-LINER Galaxy NGC 7213: An XMM-Newton Observation
We examine the XMM X-ray spectrum of the LINER-AGN NGC 7213, which is best
fit with a power law, K-alpha emission lines from Fe I, Fe XXV and Fe XXVI and
a soft X-ray collisionally ionised thermal plasma with kT=0.18 +0.03/-0.01 keV.
We find a luminosity of 7x10^(-4) L_Edd, and a lack of soft X-ray excess
emission, suggesting a truncated accretion disc. NGC 7213 has intermediate
X-ray spectral properties, between those of the weak AGN found in the LINER M81
and higher luminosity Seyfert galaxies. This supports the notion of a
continuous sequence of X-ray properties from the Galactic Centre through LINER
galaxies to Seyferts, likely determined by the amount of material available for
accretion in the central regions.Comment: 7 pages, 2 figures. To appear in From X-ray Binaries to Quasars:
Black Hole Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender,
and L. C. Ho (Dordrecht: Kluwer
Recommended from our members
The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution.
This study presents a high-resolution (similar to 5.5 km) estimate of surface mass balance (SMB) over the period 1979-2014 for the Antarctic Peninsula (AP), generated by the regional atmospheric climate model RACMO2.3 and a firn densification model (FDM). RACMO2.3 is used to force the FDM, which calculates processes in the snowpack, such as meltwater percolation, refreezing and runoff. We evaluate model output with 132 in situ SMB observations and discharge rates from six glacier drainage basins, and find that the model realistically simulates the strong spatial variability in precipitation, but that significant biases remain as a result of the highly complex topography of the AP. It is also clear that the observations significantly underrepresent the high-accumulation regimes, complicating a full model evaluation. The SMB map reveals large accumulation gradients, with precipitation values above 3000 mm we yr(-1) in the western AP (WAP) and below 500 mm we yr(-1) in the eastern AP (EAP), not resolved by coarser data sets such as ERA-Interim. The average AP ice-sheet-integrated SMB, including ice shelves (an area of 4.1 x 10(5) km(2)), is estimated at 351 Gt yr(-1) with an interannual variability of 58 Gt yr(-1), which is dominated by precipitation (PR) (365 +/- 57 Gt yr(-1)). The WAP (2.4 x 10(5) km(2)) SMB (276 +/- 47 Gt yr(-1)), where PR is large (276 +/- 47 Gt yr(-1)), dominates over the EAP (1.7 x 10(5) km(2)) SMB (75 +/- 11 Gt yr(-1)) and PR (84 +/- 11 Gt yr(-1)). Total sublimation is 11 +/- 2 Gt yr(-1) and meltwater runoff into the ocean is 4 +/- 4 Gt yr(-1). There are no significant trends in any of the modelled AP SMB components, except for snowmelt that shows a significant decrease over the last 36 years (-0.36 Gt yr(-2))
Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2
The hadronic structure function of the photon F_2^gamma is measured as a
function of Bjorken x and of the factorisation scale Q^2 using data taken by
the OPAL detector at LEP. Previous OPAL measurements of the x dependence of
F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of
F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted
by QCD, the data show positive scaling violations in F_2^gamma. Several
parameterisations of F_2^gamma are in agreement with the measurements whereas
the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001,
Ascona, Switzerlan
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
- …