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Abstract

Tropical peatlands are an important carbon store and source of greenhouse gases, but the microbial component, particularly
community structure, remains poorly understood. While microbial communities vary between tropical peatland land uses, and
with biogeochemical gradients, it is unclear if their structure varies at smaller spatial scales as has been established for a variety of
peat properties. We assessed the abundances of PLFAs and GDGTs, two membrane spanning lipid biomarkers in bacteria and
fungi, and bacteria and archaea, respectively, to characterise peat microbial communities under two dominant and contrasting
plant species, Campnosperma panamensis (a broadleaved evergreen tree), and Raphia taedigera (a canopy palm), in a
Panamanian tropical peatland. The plant communities supported similar microbial communities dominated by Gram negative
bacteria (38.9-39.8%), with smaller but significant fungal and archaeal communities. The abundance of specific microbial
groups, as well as the ratio of caldarchaeol:crenarchaeol, isoGDGT: brGDGTs and fungi:bacteria were linearly related to
gravimetric moisture content, redox potential, pH and organic matter content indicating their role in regulating microbial
community structure. These results suggest that tropical peatlands can exhibit significant variability in microbial community
abundance even at small spatial scales, driven by both peat botanical origin and localised differences in specific peat properties.
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Introduction

Tropical peatlands are a critical part of the global carbon cycle
representing a significant sink carbon containing 15-19% of
the global peat carbon stock (Dargie et al. 2017; Page et al.
2011). Tropical wetlands in general are large sources of green-
house gas emissions (GHGs), with annual emissions of up to
4540 Tg carbon dioxide (CO,) and 90 Tg methane (CHy,)
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(Sjogersten et al. 2014). Plants are key in regulating GHG
emissions, as species specific litter inputs define initial peat
properties (Cooper et al. 2019; Upton et al. 2018) and rates of
decomposition (Hoyos-Santillan et al. 2016b; Hoyos-
Santillan et al. 2015). Plant inputs of oxygen and carbon, in
the form of root exudates, have also been identified as critical
regulators (Girkin et al. 2018c; Hoyos-Santillan et al. 2016a).
Water table height and peat temperature are key environmen-
tal regulators, with the former determining whether anaerobic
or aerobic decomposition pathways dominate, affecting the
balance of CO, versus CHy production, and the latter deter-
mining the rate of biological processes (Girkin et al. 2020;
Hooijer et al. 2012; Hooijer et al. 2010; Jauhiainen et al.
2005).

While peat organic matter properties have previously been
found to vary substantially between dominant vegetation
types (Sjogersten et al. 2011; Upton et al. 2018), peat proper-
ties can also vary on much smaller scales, between both plant
species and with distance from plant stems (Girkin et al.
2019). Overall spatial variability of inputs and properties is
therefore very high, with a microtopography that is also fre-
quently visually highly heterogencous, featuring a series of
hummocks and hollows, the former of which are formed
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predominantly by plant roots and rise above the surface of the
water table, the latter of which are frequently permanently
inundated. Similarly, microbial community structure has pre-
viously been found to vary between dominant vegetation
types, driven predominantly by biogeochemical gradients
(Troxler et al. 2012). However, smaller-scale variability in
microbial community structure driven by individual plants
has never been assessed in tropical peatlands.

To date, studies assessing microbial communities in tropi-
cal forests have indicated substantial differences in microbial
community structure and activity on the conversion of prima-
ry or secondary swamp forest to plantation agriculture
(Krashevska et al. 2015; Nurulita et al. 2016). Analysis of
the 16S rRNA sequence of peats have indicated that primary
tropical swamp forest features a diverse community including
obligate anaerobes such as methanogenic archaeca
(Kanokratana et al. 2011), with bacterial community compo-
sition closely related to the availability of limiting nutrients
such as phosphorus (Troxler et al. 2012). In general, most
studies have identified high abundances of Gram negative
bacteria, particularly Acidobacteria, and relatively low fungal
abundance (Chambers et al. 2016; Jackson et al. 2009; Troxler
et al. 2012). Changes in microbial community structure with
depth in tropical peatlands have also been observed, with ar-
chaeal abundance more limited at increased depth (Jackson
et al. 2009). Differences in microbial community structure
between seasons and primary and secondary swamp forest
in Malaysia, assessed through changes in specific phospholip-
id fatty acid (PLFA) biomarkers, have also been reported.
Components of the microbial community, Gram positive and
Gram negative bacteria, have in turn been positively correlat-
ed with CO, and CH, emissions respectively (Dhandapani
et al. 2019). Assessing microbial community composition is
therefore important in interpreting greenhouse gas dynamics
within peatlands.

PLFA biomarker analysis is a widely used technique for
determining soil microbial community structure, specifically
the relative abundances of fungi, and Gram positive and
Gram negative bacteria (Frostegard et al. 2011), with results
broadly comparable to those derived from 16S rRNA gene
metabarcoding for discerning microbial community structure
(Orwin et al. 2018). Similarly, glycerol dialkyl glycerol
tetracther (GDGT) can be used to characterise archaea as well
as specific bacterial communities (Schouten et al. 2007), with
biomarkers identified in peats (Schouten et al. 2000; Weijers
et al. 2006; Zheng et al. 2015), sediments (Pancost and Damste
2003) and soils (Dirghangi et al. 2013). Both PLFAs and
GDGTs are membrane spanning lipids which differ broadly in
structure and size between microbial groups, thus allowing spe-
cific biomarkers to be attributed to individual communities,
although this has not always been consistently applied (De
Deyn et al. 2011; Nottingham et al. 2009; Tavi et al. 2013;
Yao et al. 2015). Lipid biomarker analysis has several
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advantages over other methods of characterising soil microbial
communities, including both DNA and RNA extractions. First,
DNA can persist long after cell death whereas phospholipids
are rapidly degraded, which means that DNA based methods of
assessing total biomass therefore include a certain fraction of
microbial necromass (White et al. 2009). Moreover, cell mem-
brane lipid biomarker abundances respond to both internal and
external environmental changes, meaning that PLFA and
GDGT analyses provide information on both the phenotype
and activity of microbial communities (Frostegard et al. 2011;
Ramsey et al. 2006; Willers et al. 2015).

Recent microbial community studies in peatlands using
GDGT analysis have predominantly focussed on its use as a
biomarker in paleoclimate studies (Zheng et al. 2015), but
distributions of branched GDGTs (brGDGTs) have also been
applied as a peat-specific temperature and pH proxies (Naafs
et al. 2017). brGDGTs are also thought to be produced by
heterotrophic bacteria dwelling in anoxic soils, with
Acidobacteria a key taxa (Damste et al. 2011; dos Santos
and Vane 2016). Similarly, isoprenoid GDGTs (isoGDGTs)
are broad indicators of archaeal abundance, with caldarchaeol
(GDGT-0) abundance suggested as a biomarker for methano-
genic archaea (Zheng et al. 2015).

In this study, we applied PLFA and GDGT biomarker anal-
yses to assess microbial community structure in surface peats
associated with two plant species, Campnosperma
panamensis, a broadleaved evergreen tree, and Raphia
taedigera, a canopy palm. These two species represent two
dominant components of plant community structure for the
Changuinola peat deposit, Panama. Peat derived from their
inputs has previously been reported to vary significantly in
terms of organic matter properties on both large (km) and
small scales (m) across the peatland dome (Girkin et al.
2019; Upton et al. 2018), feature varying litter decomposition
rates (Hoyos-Santillan et al. 2015), and autotrophic and het-
erotrophic respiration components (Girkin et al. 2018a). We
subsequently compared microbial community structure and
abundance to key environmental variables to relationships be-
tween dominant vegetation type, bulk peat properties and mi-
crobial communities. We hypothesised that: i) peats derived
from contrasting botanical origins would feature distinct mi-
crobial community structure; ii) biomarker abundance would
be determined by key peat biogeochemical properties includ-
ing pH, redox potential, substrate availability (C:N and organ-
ic matter content) and gravimetric moisture content.

Materials and Methods
Study Sites

This study was conducted using peat samples collected in
May 2016 in the 80 km? ombrotrophic Changuinola
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peatland in Bocas del Toro province, Panama. Peat for-
mation began 4000-5000 years ago and has resulted in a
central peat dome up to 8 m deep (Phillips et al. 1997).
The site is dominated by seven successive plant phasic
communities beginning with a coastal belt of
Rhizophora mangle (Linnaeus) mangrove, succeeded by
Raphia taedigera (Mart.) dominated palm swamp, a
mixed species forest swamp comprising R. faedigera and
Campnosperma panamensis (Standl.), a C. panamensis
dominated forest, a stunted C. panamensis forest, and a
Mpyrica-Cyrilla bog-plain (Phillips et al. 1997).

The Changuinola peat deposit has previously been ex-
tensively characterised in terms of species diversity and
abundances (Sjogersten et al. 2011), nutrient availability
(Sjogersten et al. 2011; Troxler et al. 2012), and peat
organic chemistry (Upton et al. 2018). Species composi-
tion and abundances have been reported to change over
relatively short distances matching gradients in nutrient
status towards the centre of the dome. Briefly,
R. taedigera monodominant stand has a low Shannon di-
versity index (1.13) and low stem abundance (106 stems
per hectare). The site has total phosphorus of 0.957 mg P
g ! higher than other stands at the site (Sjogersten et al.
2011). In contrast, C. panamensis monodominant stand
has a higher mean stem density of 212 stems per hectare
and a higher diversity of 1.53. Phosphorus concentrations
are lower compared to R. faedigera (0.668 mg P g '),
matching a gradual decline in nutrient concentrations to-
wards the central peat dome. Details of other nutrient and
vegetation trends across the entire dome are reported in
Phillips et al. 1997, Sjogersten et al. 2011 and Troxler
et al. 2012.

Mean annual temperature was 26 °C in the 13 years prior to
sampling, with mean annual rainfall of 3207 mm. During the
sampling period mean air temperature was 25 °C and rainfall
was 280 mm. Soil temperature was 25 °C. There is no limited
seasonality in the region, with the water table remaining close
to the surface throughout the year. There are, however two
periods of lower rainfall between February and April, and
September and October (Wright et al. 2011). During sampling,
the water table height was consistent, fluctuating +5 cm.
Central areas of the dome are consistently flooded throughout
the year.

Peat Sampling and Characterization

The microtopography under both C. panamensis and
R. taedigera plants featured a mix of shallow water pools
(hollows) and raised areas (hummocks), the formation of
which is primarily driven by the presence pneumatophores
and roots. Ten peat samples were collected from peat under
both C. panamensis trees and R. taedigera palms using a hand
trowel to excavate the acrotelm (approximately 0—10 cm).

Samples were collected from slight depressions between roots
which at the time of sampling were water-saturated but not
flooded. Samples were stored in zip-lock bags and transported
to the University of Nottingham where they were stored at
4 °C prior to analysis.

Sub-samples from each site were used to characterise
physiochemical properties in the laboratory. Peat moisture
content was determined through gravimetric analysis of
the mass of water lost from 10 g wet weight peat oven
dried at 105 °C for 24 h. Organic matter content was
determined as the mass lost after ignition for 7 h at
550 °C. Total peat carbon (C) and total nitrogen (N) were
determined from 0.2 g of dry, homogenised peat
combusted using a total element analyser (Flash EA
1112, CE Instruments, Wigan, UK). Peat pH and redox
potential were measured using a Hanna 209 pH meter
coupled with separate pH and redox probes. Electrical
conductivity was measured simultaneously using a con-
ductivity meter.

PLFA Analysis

PLFAs were extracted from 20 peat samples following the
Bligh and Dyer (1959). Total lipids were extracted from
500 mg of freeze-dried soils using citrate buffer (0.15 M,
pH 4), 1.9 ml chloroform (CHCls), 3.8 ml methanol
(MeOH) and 2 ml Bligh and Dyer reagent (CHCl;: MeOH:
citrate buffer; 1: 2: 0.8 volume ratio). Extracts were vortexed
for one minute and left at room temperature to separate for two
hours. Subsequently, extracts were centrifuged for 10 min at a
relative centrifugal force of 650 before the supernatant was
transferred to a CHCI; rinsed glass tube. This step was repeat-
ed twice to ensure complete extraction of lipids from the soil
pellet. Citrate buffer and chloroform (1:1 volume ratio) were
added and left overnight to allow separation of aqueous and
organic phases. The chloroform layer was transferred to a
clean glass tube and blown dry under a stream of N, at room
temperature (Bligh and Dyer 1959).

Lipids were separated using a silica solid phase extrac-
tion cartridge. The cartridge column was rinsed first with
15 ml methanol followed by 2.5 ml chloroform. The dry
lipid extract was re-suspended in 0.5 ml chloroform and
added to the column. Lipids were separated into neutral
lipids, glycolipids and phospholipid fractions using chlo-
roform, acetone and methanol solutions respectively. The
PLFA fraction was collected and evaporated under a
stream of N, at 36 °C.

Phospholipid samples were re-suspended in 1 ml MeOH:
toluene (1:1 volume ratio) and trans-esterified to fatty acid
methy esthers (FAMEs) using 1 ml 0.2 M KOH dissolved in
methanol. For liquid extraction, 2 ml of hexane:chloroform
(4:1 volume ratio), 0.3 ml acetic acid (1.0 M), and 2 ml ultra-
pure water were added. C13 and C19 internal standards were
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added to the samples before evaporating FAMEs under a
stream of compressed N, and re-suspension in hexane prior
to GC analysis. PLFAs were identified and quantified using
gas-chromatography.

Standard PLFA nomenclature is applied (A:BwC) where A
is total number of carbon atoms, B is the number of double
bonds, and C is the position of double bond from the methyl
end of the molecule. ‘C’ and ‘T’ indicate cis and trans isomers,
and ‘A’, ‘T’ indicates iso- and anteiso-, and ‘Me’ and ‘Cy’
indicate methyl groups and cyclopropyl rings respectively
(Kong et al. 2011). C15:01, C15:0a, C16:01, C17:0i and
C17:0a PLFA biomarkers were assigned to Gram positive
bacteria. C16:1w7, C17:0, C18:1w7, and 7,8Cy-C19:0 were
assigned to Gram negative bacteria. Fungal PLFA biomarkers
were C18:2w6c, C18:1w9c. C14:0, C15:0, C16:1w6, C16:0,
Cl17:1w8, 10Me-C16:0, C17:1, 10Me-C17:0, and C18:0, bio-
markers were unclassified due to a lack of specificity to any
microbial group.

GDGT Analysis

GDGTs were extracted from 20 freeze-dried peat samples
(500 mg) using an Accelerated Solvent Extractor (ASE)
200, Dionex, operated at 100 °C and 7.6 x 10° Pa with a mix-
ture of dichloromethane (DCM): methanol (MeOH) (9:1, v:v)
to obtain a total lipid extract (TLE). Internal standards
squalane and C4s GDGTs were added to the TLE, which
was subsequently separated into an apolar and polar fraction
in an alumina oxide column (Al,0O3), using n-hexane/DCM
9:1, and methanol/DCM 1:1 as eluents. The polar fractions
were filtered through a polytetrafluoroethylene filter (PTFE -
0.45 pum) and analysed using a Thermo TSQ Quantiva
coupled to an Ultimate 3000 series U-HPLC following a
slightly modified method of Schouten et al. (2007) described
in Lopes dos Santos and Vane (2016). Shortly, separation was
achieved on a Prevail Cyano column (2.1 x 150 mm, 3 Am;
Alltech, Deerfield, IL, USA), maintained at 30 °C. Tetracthers
were eluted isocratically with 99% A and 1% B for 5 min,
followed by a linear gradient to 1.8% B in 45 min, where A is
hexane and B is isopropanol. Flow rate was 0.2 ml min .
Detection was achieved using atmospheric pressure positive
ion chemical ionization mass spectrometry (APCI-MS) of the
eluent. Conditions for APCI-MS were as follows: sheath gas
20, auxiliary gas 2, ion transfer tube temperature 325 °C,
vaporiser temperature 400 °C, pos. lon discharge 2. Relative
GDGT distributions were determined by integrating the
summed peak areas in the respective [M + H]". IsoGDGTs
(GDGT-0, GDGT-1, GDGT-2, GDGT-3, crenarchaeol and
isocrenarchaeol) were assigned to archaea, and brGDGTs
(brGDGT-IIIa, brGDGT-Ila, brGDGT-IIb, brGDGT-IIc,
brGDGT-Ia, brGDGT-Ib and brGDGT-Ic) were assigned to
bacteria (Fig. 1).
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Statistical Analysis

A one-way ANOVA was used to assess differences properties
and biomarker abundances between peat types. Principal com-
ponent analyses (PCAs), based on correlation matrices, were
used to visualise microbial community profiles for both peat
types and were applied separately for individual PLFA and
GDGT biomarkers. Backwards stepwise regression was used
to identify which biogeochemical variables best described
PLFA and GDGT biomarker abundance for specific groups
of microorganisms. The groups used were total, Gram positive
and Gram negative bacteria, and fungi calculated from PLFA
biomarker abundance and PC-1 and PC-2 from the PLFA
PCA, archaea (total IsoGDGTs) and bacteria (total
brGDGTs) from GDGT biomarker abundance, and PC-1 and
PC-2 from the GDGT PCA. For each regression, the maximal
model comprised all measured biogeochemical properties in-
cluded pH, redox potential, electrical conductivity, total car-
bon and nitrogen, moisture content and organic matter con-
tent. Non-significant variables were eliminated individually
using backwards elimination regression using p>0.05 as a
cut-off. Non-linear models were also tested using the same
data. R? values reported in text are adjusted R? derived from
multiple regression models. All statistical analyses were con-
ducted in GenStat v17.1, and figures produced in GraphPad
Prism v7.04.

Results
Peat Properties

Peats from under both species were acidic, with pH signifi-
cantly lower under C. panamensis (4.2) compared to
R. taedigera (4.7) (p < 0.005, Table 1). Electrical conductivity
was low, and both peat types were weakly reducing (<
300 mV) with neither property differing significantly between
species. Moisture content and organic matter content were
high for both peats (> 80%), with organic matter content sig-
nificantly greater in C. panamensis peats (92.7%) compared to
R. taedigera (87.7%) (p < 0.05). Total carbon (p < 0.001) and
total nitrogen (p < 0.05) were both greater in C. panamensis
peats (40.8% and 2.4%) compared to R. taedigera (35.3% and
2.1%). C:N ratios were similar between peat types (17.2—
17.3).

Microbial Community Composition

Microbial communities from under both plant species had
broadly profiles (Fig. 2a). Total PLFA biomarker abundance
was somewhat higher in C. panamensis peats (74.7 +
7.0 ug g ') compared to R. taedigera peats (62.3 +
4.9 ug g ") but there were no significant differences between
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Fig. 1 Molecular structure of identified br- and isoGDGTs

peat types for any specific PLFA biomarker groupings (Fig.
2b). The ratios of fungi:bacteria (0.12—0.13) and Gram
positive:Gram negative bacteria (0.65-0.68) were consistent
between peat types. Fungal biomarkers were the smallest
group relative to total biomarker abundance (Fig. 2c). Gram
negative biomarkers were most abundant, accounting for
38.9-39.8% of total biomarkers. PCA broadly separated both
peat types, with separation along the first principal component
(PC-1) separated by C15:01, as well as several non-specific
biomarkers. PC-2 separated loadings by Cl16:1w7, C16:0,
10Me-C17:0, amongst others. Collectively PC-1 and PC-2
accounted for 77% of variance (Fig. 2d-¢).

GDGT biomarker profiles indicated only limited differ-
ences in archaea (is0GDGTSs) and bacteria (brGDGTs) abun-
dance between peats (Fig. 3a) with no significant differences
(p>0.05). GDGT-0 was the most abundant isoGDGT for both
peat types, and brGDGT-Ia was the most abundant brGDGT.
Overall brGDGT abundance was greater than isoGDGT

Table 1 Biogeochemical properties from C. panamensis and
R. taedigera derived peats. Means + one SE (n=10). * =p <0.05, ** =

Peat botanical origin C. panamensis R. taedigera
pH 42 +£0.07 4.7 £0.1 **
Conductivity (uS cm ") 63.3 £20.8 859 +10.3
Redox potential (mV) 2264 +9.0 2399 +22
Moisture content (%) 86.0 £ 1.2 84.8 £ 0.9
Organic matter (%) 92.7+ 1.6 87.7+13*
Total carbon (%) 40.8 £ 1.1 353 £ 1.6 ##*
Total nitrogen (%) 24 +£0.1 2.1+£0.1%
CN 173 £0.8 17.2+0.3

isoGDGTs
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Ml GDGT-3
0%01 Crenarchaeol
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H

abundance (Fig. 3b). There were no significant differences
in total abundances of isoGDGTs, or brGDGTs between peat
types (p > 0.05). The ratio of caldarchacol:crenarchaeaol was
greater under C. panamensis (13.0) than for R. taedigera (6.0)
but was not significantly different (p > 0.05). PCA conducted
using GDGT biomarkers again indicated limited broad scale
differences in microbial community structure between peat
types. With the exception of crenarchaea, the second principle
component predominantly separated isoGDGTs from
brGDGTs. Collectively PC-1 and PC-2 accounted for 72%
of variance (Fig. 3c-d).

Environmental Regulation of Microbial Communities

The results of multiple linear regression indicated several sig-
nificant relationships between key environmental variables
and biomarker abundance (Table 2). A significant positive
linear relationship was identified between fungi:bacteria and
redox potential (p <0.05). In addition, a significant positive
linear relationship was identified between total carbon and
PLFA PC-2 (p<0.001). Significant relationships were also
identified between GDGT-0 abundance and pH (p <0.05),
and moisture content (p <0.01), with decreasing pH but in-
creasing moisture content associated with greater abundance.
Similar relationships were identified for GDGT PC-2 (p<
0.05). Crenarchaeol abundance decreased significantly with
increasing organic matter content (p<0.01).
Caldarchaeol:crenarchaeaol (p <0.05) and isoGDGT abun-
dance (p <0.05) both increased significantly with moisture
content. The ratio of iso:brGDGTs, however, was significantly
related to pH (p <0.05), the ratio decreasing at higher, less
acidic, pH.
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Peat Botanical Origin and Microbial Community
Structure

The PLFA and GDGT biomarker profiles of peats collected
under C. panamensis and R. taedigera were broadly similar,
with both microbial communities featuring a dominance of
Gram negative bacteria, and lower abundances of fungi and
archaea. Previous studies have identified stronger differences
in microbial community structure between peats derived from
contrasting botanical origins (Borga et al. 1994; Troxler et al.
2012), or have alternatively identified differences in microbial
activity (Sjogersten et al. 2011). These processes are generally
driven by strong gradients in peat properties (for example, pH
and phosphorus). Substantial small-scale variation in peat
properties (including pH and organic matter properties) has
also previously been reported, with some differences between
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(Girkin et al. 2019). However, it is now clear that these differ-
ences in peat properties between dissimilar plant species do
not necessarily result in contrasting microbial community
profiles.

The consistently high abundance of Gram negative bacteria
may be driven by the dominance Acidobacteria, which are
critical components of the microbial community of both trop-
ical (Jackson et al. 2009; Troxler et al. 2012) and temperate
peats (Dedysh et al. 2006), with their ubiquity reflecting their
oligotrophy (Fierer et al. 2007). High abundances of
brGDGTs were also found, which have previously been re-
ported as indicative of Acidobacteria in peats and soils
(Damste et al. 2011).

Methanotrophs are a key microbial group in peatlands
(Hanson and Hanson 1996), with specific PLFA biomarkers
previously proposed in the literature, including C16:1w5,
Cl6:1w7, Cl16:1w8c and Cl6:1wllc for type I
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Fig. 3 (a) GDGT biomarker abundance for C. panamensis and R. taedigera. (b) Net abundance of br- and isoGDGT biomarkers. (d) PCA loadings for
GDGT biomarkers. (e) PCA scores for GDGT biomarkers. Means + one SE (n=15)

methanotrophs, and C18:1w7¢ and C18:1w8c for type II
methanotrophs (Maxfield et al. 2006; Mills et al. 2013;
Roslev and Iversen 1999; Singh et al. 2007). Both C16:1w5
and C18:1w7c were detected in both C. panamensis and
R. taedigera peats in this study and were the most abundant
Gram negative biomarkers, accounting for approximately
73% (21.2 pg g ') of total Gram negative PLFA abundance
(Fig. 2a). High methanotroph abundance would also imply

large CH,4 production, which has previously been reported
from both in situ and ex situ studies of CH,4 production/
fluxes (Girkin et al. 2018b; Girkin et al., 2018; Sjogersten
etal. 2011).

Fungal biomarkers were generally present at much lower
abundances than other PLFA biomarkers, accounting for only
7.6-7.7% of total PLFAs, a finding possibly driven by the
largely anoxic conditions. Fungi have previously been

Table2 Backwards stepwise linear regression, reporting p value and B for multiple regression models. Total carbon and total nitrogen were included in
the maximal model but were not significant (p > 0.05). + and — B indicate direction of linearity
Parameter Fungi: PLFA GDGT-0 Crenarchaeol Caldarchaeol: isoGDGTs isoGDGT: GDGT
bacteria PC-2 (Caldarchaeol) crenarchaeol brGDGTs PC-2
Redox potential p value 0.042
B +2.23
Total carbon p value < 0.001
B +5.63
pH p value 0.02 0.041 0.047
B -2.56 -2.20 —2.42
Moisture content p value 0.006 0.039 0.031 0.027
B +3.15 +2.22 +2.33 +2.14
Organic matter p value 0.006
content
B -3.10
F-statistic 4.98 31.7 9.18 9.6 4.93 5.44 4.82 5.84
d.f. 1,14 1,14 2,17 1,18 1,18 1,18 1,18 2,17
p value 0.042 <0.001 0.002 0.006 0.039 0.031 0.041 0.012
Adjusted-R? 0.15 0.65 0.40 0.27 0.13 0.14 0.12 0.26
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proposed as critical decomposers of organic matter in tropical
peatlands, with groups identified which can decompose or-
ganic compounds ranging from simple polymers to complex
phenolics including lignins and tannins (Thormann 2006).
Woody wetland plants frequently form mutualisms with
arbuscular mycorrhizal fungi (AMF), including in mangrove
swamps (Wang et al. 2010) and in high altitude Andean wet-
lands (Vanesa et al. 2013) amongst others (Xu et al. 2016),
although AMF biomarkers were not identified in this study.

Overall, archaea (isoGDGT) biomarkers were present at
relatively low concentrations compared to bacteria
(brGDGT) biomarkers, accounting for up to 8% of total
GDGT compounds (Fig. 3b). This low abundance may, in
part, be driven by regular changes in water table height at
the site (—20-9 cm from February — May 2016), resulting in
alternating oxic and anoxic conditions (Weijers et al. 2006).
Low archaeal abundances have previously been reported in
surface tropical peats, with archaea accounting for only
1.6% of the total microbial community in a peat swamp forest
in Thailand, as identified by pyrosequencing (Kanokratana
et al. 2011), although much higher abundances have been
reported with parity with total bacteria (Espenberg et al.
2018).

The ratio of caldarchaeol:crenarchaeol has previously been
reported as a good indicator of whether GDGTs in soils and
sediments are dominated by methanogenic or non-
methanogenic Euryarchaeota, with higher ratios (> 1.4) indi-
cating the production of caldarchaeol and thus the presence of
methanogenic archaea (Zhang et al. 2016). Mean ratios were
13.0 and 6.0 under C. panamensis and R. taedigera respec-
tively, likely explaining the high CH4 production potential of
the peat soils previously reported (Girkin et al. 2018c; Hoyos-
Santillan et al. 2016b). This ratio has also been explicitly
linked to the concentrations of dissolved oxygen in sediments
(Zhang et al. 2016), and in this study was significantly corre-
lated with soil moisture content (Table 2). High relative abun-
dance of methanogenic archaca may explain high CH, surface
fluxes previously reported from the Changuinola deposit
(Wright et al. 2013a), and would likely also support the large
methanotroph community identified in this study from
Cl6:1w5 and C18:1w7 PLFA biomarkers. These two com-
munities likely coexist in low oxygen and high oxygen
microsites throughout the peat profile, with oxygen inputs
from surface diffusion and root inputs (Girkin 2018).

Environmental Regulation of Microbial Community
Structure

While microbial community structure did not differ between
peat types, variation in several peat properties was key in
determining the abundance of several microbial groups.
Redox potential and pH were identified as significant regula-
tors of caldarchaeol:crenarchaeol isoGDGTs:brGDGTSs,
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fungi:bacteria, and isoGDGT abundance (Table 2). Both var-
iables are closely linked, with redox potential, measuring the
activity of electrons within the peat, and pH assessing proton
activity (Reddy and DeLaune 2008). Redox potential is also
closely linked to soil moisture content, as waterlogged soils
are low in oxygen, except for inputs derived from root oxygen
loss and atmospheric diffusion at the surface boundary
(Hoyos-Santillan et al. 2016a). Plant root inputs of carbon
(root exudates) are also able to directly influence peat proper-
ties, and may therefore also exert an indirect control on mi-
crobial community structure and function, but the precise ef-
fect is dependent on the composition and concentration of the
input (Girkin et al. 2018b). Moreover, peat properties are also
strongly linked to the properties and quantity of leaf, root and
shoot inputs and the influence of their decomposition products
on their immediate environment (Hoyos-Santillan et al. 2015).

The significant link between redox potential and
fungi:bacteria abundance is important because under oxic
conditions fungi are key decomposers (Thormann 2006).
The inhibitive role of waterlogged conditions on tropical peat
fungal abundance has been previously demonstrated, with
significant increases in fungal gene copy numbers following
a drought event (Kwon et al. 2013). Low redox potential in-
dicates increasingly anoxic peat which may limit the presence
of fungi, which are frequently obligate aerobes. Organic mat-
ter content, indicating the broad availability of substrate for
microbial respiration, was also positively correlated to
crenarchacol GDGT biomarker abundance, suggesting a pos-
sible role as a limiting factor for its abundance. This may be
because crenarchaeaol are limited by the availability of spe-
cific components of the available organic matter pool, which
may increase in line with total organic matter availability
(Girkin et al. 2019; Hodgkins et al. 2018), as it is unlikely that
total organic matter content is limiting in a tropical peatland
system. In addition, the significant linear regression between
PLFA PC-2 and total carbon, and GDGT PC-2 and moisture
content and pH broadly matches those of previous studies of
tropical peatland microbial community structure, which have
identified substrate availability (C, N and P), and pH as key
for determining diversity (Krashevska et al. 2015; Troxler
etal. 2012).

Previous studies in tropical soils and peats have noted that
microbial community structure and abundance can exhibit a
tendency towards seasonality (Dhandapani et al. 2019; Smith
et al. 2018). Tropical peatlands are subject to distinct wet and
dry seasons which can exert a strong influence on water table
height in particular, altering the balance between oxic and
anoxic processes (Wright et al. 2013b). Peats in this experi-
ment were collected from hollow, which, in general, are more
consistently water-saturated throughout the year compared to
hummocks formed by root material (Jauhiainen et al. 2005).
As a consequence, we speculate that the significant relation-
ships between redox potential and soil moisture and a variety
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of PLFA and GDGT biomarker abundances mean that season-
al changes in precipitation will influence on community struc-
ture in this ombrotrophic peatland, with potential conse-
quences for GHG emissions. This has been previously dem-
onstrated to be the case in temperate peatlands, with signifi-
cant changes in microbial community structure with changes
in water table depth (Zhong et al. 2015), and has recently been
reported in two tropical peatlands in Malaysia (Dhandapani
etal. 2019).

Conclusion

Our results indicate that botanical origin can result in substan-
tial differences in peat bulk properties, specifically total car-
bon and nitrogen, pH, and organic matter content. However,
while many of these properties significantly affected the abun-
dance of specific components of the peat microbial commu-
nity, overall community structure did not vary significantly
between peat types. The PLFA and GDGT biomarker profiles
for C. panamensis and R. taedigera derived peats are amongst
the first for Neotropical peatlands and indicate a dominance of
Gram negative bacteria (38.9-39.8%). Prevailing environ-
mental conditions, particularly soil moisture content and small
changes in pH exerted a significant control on the abundance
of specific microbial groups which are known as key drivers
of ecosystem GHG fluxes, including methanogens and
methanotrophs. This is important in the wider context of land
use change in the tropics, as these processes alter peat proper-
ties and subsequent GHG production.
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