579 research outputs found

    Draft genome sequence of a nonhemolytic fish-pathogenic streptococcus agalactiae strain

    Get PDF
    Streptococcus agalactiae is a significant Gram-positive bacterial pathogen of terrestrial and aquatic animals. A subpopulation of nonhemolytic strains which appear to be pathogenic only for poikilotherms exists. We report here the first draft genome sequence of a nonhemolytic S. agalactiae isolate recovered from a diseased fish

    Regulation of Carotenoid Composition and Shoot Branching in Arabidopsis by a Chromatin Modifying Histone Methyltransferase, SDG8

    Get PDF
    Carotenoid pigments are critical for plant survival, and carotenoid composition is tuned to the developmental stage, tissue, and to environmental stimuli. We report the cloning of the CAROTENOID CHLOROPLAST REGULATORY1 (CCR1) gene. The ccr1 mutant has increased shoot branching and altered carotenoid composition, namely, reduced lutein in leaves and accumulation of cis-carotenes in dark-grown seedlings. The CCR1 gene was previously isolated as EARLY FLOWERING IN SHORT DAYS and encodes a histone methyltransferase (SET DOMAIN GROUP 8) that methylates histone H3 on Lys 4 and/or 36 (H3K4 and H3K36). ccr1 plants show reduced trimethyl-H3K4 and increased dimethyl-H3K4 surrounding the CAROTENOID ISOMERASE (CRTISO) translation start site, which correlates with low levels of CRTISO mRNA. Microarrays of ccr1 revealed the downregulation of 85 genes, including CRTISO and genes associated with signaling and development, and upregulation of just 28 genes. The reduction in CRTISO transcript abundance explains the altered carotenoid profile. The changes in shoot branching are additive with more axillary branching mutants, but the altered carotenoid profile may partially affect shoot branching, potentially by perturbed biosynthesis of the carotenoid substrates of strigolactones. These results are consistent with SDG8 regulating shoot meristem activity and carotenoid biosynthesis by modifying the chromatin surrounding key genes, including CRTISO. Thus, the level of lutein, the most abundant carotenoid in higher plants that is critical for photosynthesis and photoprotection, appears to be regulated by a chromatin modifying enzyme in Arabidopsis thaliana

    Pseudomonas aeruginosa is capable of natural transformation in biofilms

    Get PDF
    Natural transformation is a mechanism that enables competent bacteria to acquire naked, exogenous DNA from the environment. It is a key process that facilitates the dissemination of antibiotic resistance and virulence determinants throughout bacterial populations. Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that produces large quantities of extracellular DNA (eDNA) that is required for biofilm formation. P. aeruginosa has a remarkable level of genome plasticity and diversity that suggests a high degree of horizontal gene transfer and recombination but is thought to be incapable of natural transformation. Here we show that P. aeruginosa possesses homologues of all proteins known to be involved in natural transformation in other bacterial species. We found that P. aeruginosa in biofilms is competent for natural transformation of both genomic and plasmid DNA. Furthermore, we demonstrate that type-IV pili (T4P) facilitate but are not absolutely essential for natural transformation in P. aeruginosa

    Physical activity recommendations from general practitioners in Australia. Results from a national survey

    Get PDF
    OBJECTIVE: To identify subgroups of Australian adults likely to receive physical activity advice from their general practitioner and to evaluate the content of the advice provided. METHODS: Participants (n=1,799), recruited from the Australian Health and Social Science panel, completed an online survey. Signal Detection Analysis was used to identify subgroups that were more/less likely to have received physical activity recommendations. RESULTS: Overall, 18% of participants received a physical activity recommendation from their general practitioner in the past 12 months and eight unique subgroups were identified. The subgroup with the highest proportion (54%) of participants reporting that they received a physical activity recommendation was those with poor physical and mental health-related quality of life and an average daily sitting time of <11 hours. Other subgroups with high proportions of individuals receiving recommendations were characterised by higher weight and/or the presence of co-morbidities. The most commonly prescribed physical activity type was aerobic activity. Few participants received specific physical activity advice. CONCLUSIONS: General practitioners are incorporating physical activity promotion into their practice, but primarily as a disease management tool and with limited specificity. IMPLICATIONS: Strategies to assist Australian general practitioners to effectively promote physical activity are needed

    LEO to GEO (and Beyond) Transfers Using High Power Solar Electric Propulsion (HP-SEP)

    Get PDF
    Rideshare, or Multi-Payload launch configurations, are becoming more and more commonplace but access to space is only one part of the overall mission needs. The ability for payloads to achieve their target orbits or destinations can still be difficult and potentially not feasible with on-board propulsion limitations. The High Power Solar Electric Propulsion (HP-SEP) Orbital Maneuvering Vehicle (OMV) provides transfer capabilities for both large and small payload in excess of what is possible with chemical propulsion. Leveraging existing secondary payload adapter technology like the ESPA provides a platform to support Multi-Payload launch and missions. When coupled with HP-SEP, meaning greater than 30 kW system power, very large delta-V maneuvers can be accomplished. The HP-SEP OMV concept is designed to perform a Low Earth Orbit to Geosynchronous Orbit (LEO-GEO) transfer of up to six payloads each with 300kg mass. The OMV has enough capability to perform this 6 kms maneuver and have residual capacity to extend an additional transfer from GEO to Lunar orbit. This high deltaV capability is achieved using state of the art 12.5kW Hall Effect Thrusters (HET) coupled with high power roll up solar arrays. The HP-SEP OMV also provides a demonstration platform for other SEP technologies such as advanced Power Processing Units (PPU), Xenon Feed Systems (XFS), and other HET technologies. The HP-SEP OMV platform can be leveraged for other missions as well such as interplanetary science missions and applications for resilient space architectures

    Integrated DNA and RNA Sequencing Reveals Drivers of Endocrine Resistance in Estrogen Receptor Positive Breast Cancer

    Get PDF
    PURPOSE: Endocrine therapy resistance (ETR) remains the greatest challenge in treating patients with hormone receptor–positive breast cancer. We set out to identify molecular mechanisms underlying ETR through in-depth genomic analysis of breast tumors. EXPERIMENTAL DESIGN: We collected pre-treatment and sequential on-treatment tumor samples from 35 patients with estrogen receptor–positive breast cancer treated with neoadjuvant then adjuvant endocrine therapy; 3 had intrinsic resistance, 19 acquired resistance, and 13 remained sensitive. Response was determined by changes in tumor volume neoadjuvantly and by monitoring for adjuvant recurrence. Twelve patients received two or more lines of endocrine therapy, with subsequent treatment lines being initiated at the time of development of resistance to the previous endocrine therapy. DNA whole-exome sequencing and RNA sequencing were performed on all samples, totalling 169 unique specimens. DNA mutations, copy-number alterations, and gene expression data were analyzed through unsupervised and supervised analyses to identify molecular features related to ETR. RESULTS: Mutations enriched in ETR included ESR1 and GATA3. The known ESR1 D538G variant conferring ETR was identified, as was a rarer E380Q variant that confers endocrine hypersensitivity. Resistant tumors which acquired resistance had distinct gene expression profiles compared with paired sensitive tumors, showing elevated pathways including ER, HER2, GATA3, AKT, RAS, and p63 signaling. Integrated analysis in individual patients highlighted the diversity of ETR mechanisms. CONCLUSIONS: The mechanisms underlying ETR are multiple and characterized by diverse changes in both somatic genetic and transcriptomic profiles; to overcome resistance will require an individualized approach utilizing genomic and genetic biomarkers and drugs tailored to each patient

    Ormosil-coated conjugated polymers for the detection of explosives in aqueous environments

    Get PDF
    This project has received funding from the TIRAMISU project, funded by the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 284747, and the Engineering and Physical Sciences Research Council under grants EP/K503940/1, EP/K503162/1, EP/N509759/1. IDWS acknowledges a Royal Society Wolfson Research Merit Award. The research data supporting this publication can be accessed at http://dx.doi.org/10.17630/3875a099-bb75-4ae1-82e5-0b98b6b7ebc6.A fluorescence-based sensor for detecting explosives, based on a conjugated polymer coated with an ormosil layer, has been developed for use in aqueous environments. The conjugated polymer Super Yellow was spin-coated onto glass substrates prior to a further spin-coating of an MTEOS/TFP-TMOS-based ormosil film, giving an inexpensive, solution-based barrier material for ruggedization of the polymer to an aqueous environment. The sensors showed good sensitivity to 2,4-DNT in the aqueous phase at micromolar and millimolar concentrations, and also showed good recovery of fluorescence when the explosive was removed.PostprintPeer reviewe

    Multiple holins contribute to extracellular DNA release in Pseudomonas aeruginosa biofilms

    Get PDF
    Bacterial biofilms are composed of aggregates of cells encased within a matrix of extracellular polymeric substances (EPS). One key EPS component is extracellular DNA (eDNA), which acts as a ‘glue’, facilitating cell–cell and cell–substratum interactions. We have previously demonstrated that eDNA is produced in Pseudomonas aeruginosa biofilms via explosive cell lysis. This phenomenon involves a subset of the bacterial population explosively lysing, due to peptidoglycan degradation by the endolysin Lys. Here we demonstrate that in P. aeruginosa three holins, AlpB, CidA and Hol, are involved in Lys-mediated eDNA release within both submerged (hydrated) and interstitial (actively expanding) biofilms, albeit to different extents, depending upon the type of biofilm and the stage of biofilm development. We also demonstrate that eDNA release events determine the sites at which cells begin to cluster to initiate microcolony formation during the early stages of submerged biofilm development. Furthermore, our results show that sustained release of eDNA is required for cell cluster consolidation and subsequent microcolony development in submerged biofilms. Overall, this study adds to our understanding of how eDNA release is controlled temporally and spatially within P. aeruginosa biofilms

    Preconcentration techniques for trace explosive sensing

    Get PDF
    This project has received funding from NATO Science for Peace & Security under grant agreement MYP G5355, the European Union’s Seventh Framework Programme for research, technological development and demonstration under agreement no 284747, and the EPSRC under EP/K503940/1.Trace sensing of explosive vapours is a method in humanitarian demining and Improvised Explosives Device (IED) detection that has received increasing attention recently, since accurate, fast, and reliable chemical detection is highly important for threat identification. However, trace molecule sampling in the field can be extremely difficult due to factors including weather, locale, and very low vapour pressure of the explosive. Preconcentration of target molecules onto a substrate can provide a method to collect higher amounts of analyte for analysis. We used the commercial fluoropolymer Aflas as a preconcentrator material to sorb explosive molecules to the surface, allowing subsequent detection of the explosives via the luminescence quenching response from the organic polymer Super Yellow. The preconcentration effect of Aflas was confirmed and characterised with 2,4-DNT, prior to field sampling being conducted at a test minefield in Croatia by placing preconcentration strips in the entrance of the hives, where honeybees have collected explosive materials during free-flying. In this work we show for the first time a method for confirmation of landmines combining honeybee colonies containing a preconcentration material and subsequent monitoring of luminescence quenching.PostprintPeer reviewe
    • …
    corecore