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Abstract 

Trace sensing of explosive vapours is a method in humanitarian demining and Improvised 

Explosives Device (IED) detection that has received increasing attention recently, since 

accurate, fast, and reliable chemical detection is highly important for threat identification. 

However, trace molecule sampling in the field can be extremely difficult due to factors 

including weather, locale, and very low vapour pressure of the explosive. Preconcentration 

of target molecules onto a substrate can provide a method to collect higher amounts of 

analyte for analysis. We used the commercial fluoropolymer Aflas as a preconcentrator 

material to sorb explosive molecules to the surface, allowing subsequent detection of the 

explosives via the luminescence quenching response from the organic polymer Super 
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Yellow. The preconcentration effect of Aflas was confirmed and characterised with 2,4-DNT, 

prior to field sampling being conducted at a test minefield in Croatia by placing 

preconcentration strips in the entrance of the hives, where honeybees have collected 

explosive materials during free-flying. In this work we show for the first time a method for 

confirmation of landmines combining honeybee colonies containing a preconcentration 

material and subsequent monitoring of luminescence quenching. 

Highlights 

 Trace detection of explosive vapours is challenging in real-world environments. 

 By “preconcentrating” trace vapours onto solid substrates, higher amounts can be 

collected for detection. 

 Our approach combines fluoropolymer preconcentrators, free-flying honeybees for 

sampling, and luminescent thin films as the sensing mechanism. 

 The inexpensive, commercially-available fluoropolymer Aflas has shown good 

preconcentration abilities for 2,4-DNT which is typically found in landmines. 

 Laboratory results and initial field results indicate this method is a very promising 

tool for the detection of trace explosive vapours in contaminated land. 

Keywords: Nitroaromatic; Apis mellifera carnica; REST sampling; Luminescence quenching; 

fluoropolymer; honeybee 

 

1. Introduction 

Chemical sensing of nitroaromatic compounds can be extremely challenging in the field, 

particularly if the target analyte is in trace amounts in the environment. An important 
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scenario is the detection of buried landmines, which remain active and consequently a high 

public risk even after decades. While animals can be used for trace vapour mine detection, 

alternative techniques that are fast-responding and highly sensitive with low probability for 

false detections would be a significant addition to a demining toolkit. Current methods to 

detect explosives on minefields include sniffer dogs and Ion Mass Spectrometry (IMS), which 

have drawbacks primarily in terms of training, upkeep, cost and behaviour in the former 

(Porritt et al., 2015), or cost, lack of selectivity, and reportedly high level of false positives in 

the latter (Caygill et al., 2012; Giannoukos et al., 2016). 

Remote Explosive Trace Sampling (REST) is a method used in pre-clearance technical surveys 

of suspected minefields to ascertain the presence of explosives, and again at the end of the 

process for Quality Assurance (QA) (Beyene, 2010; Fjellanger, 2004; Lugo et al., 2017). This 

process involves sampling the air above a potential mine into a PVC or polyethylene net, 

tagging the sample and sending off-site to specialist centres for trained sniffer dogs to 

identify, before sending the information back to the field. However, this process can take up 

to several weeks between initial sampling and receiving the result, and requires an 

operative to walk on potentially contaminated land. There is therefore a strong interest in 

alternative methods both to collect samples across mine-suspected areas without entering 

the area, and to detect promptly and sensitively any sampled explosive residues. 

Luminescent organic semiconductor films have been attracting a high level of attention in 

recent years as explosive vapour sensing films due to their very high sensitivity to 

nitroaromatic vapours through an electron transfer process from the polymer to 

nitroaromatic molecule giving a light-reducing quenching effect (Ali et al., 2016; Bolse et al., 

2017; Gillanders et al., 2018; Narayanan et al., 2008; Shoaee et al., 2016; Thomas et al., 
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2007; Toal and Trogler, 2006; Wang et al., 2011b; Yang and Swager, 1998). Instrumentation 

based on exploiting these materials has been developed for humanitarian demining 

applications (Gillanders, 2017; Wang et al., 2011a) in recent years. The commercial organic 

polymer shown in Figure 1 (a) from Merck, Super Yellow, exhibits high sensitivity to 

nitroaromatic compounds including 2,4-DNT, a common component in landmine 

manufacture and a degradation product of TNT. However, for use in the field, where 

uncontrollable environmental factors can disperse the trace vapour plume, a method to pre-

concentrate the target analytes prior to exposure to the sensor would offer an advantage. 

Certain polymers have properties that enable them to accumulate explosive vapours to the 

surface, based on the hydrogen bond acidity between polymer and target vapour (Abraham, 

1993; Houser et al., 2001; McGill et al., 1994). These have been successfully developed for 

highly-sensitive Surface Acoustic Wave sensors for hazardous targets including nerve agents 

and radionuclides (Grate, 2008), and for HPLC columns applied to environmental monitoring 

(Egorov et al., 2006; Grate et al., 2007). These polymers effectively act as a “magnet” for the 

explosives, whereby the nitroaromatic compound adsorbs to the surface, and the 

application of heat leads to thermal desorption (Camara et al., 2014; Martin et al., 2007; 

Serrano et al., 2013; Tiwary et al., 2016; Voiculescu et al., 2006), as shown in Figure 2. The 

specially designed materials studied in the literature for this purpose are usually expensive 

(approx. $600 for 100 mg at time of writing) which inhibits their ability to be prepared in 

large batches for humanitarian demining efforts. A commercial, amorphous random co-

polymer of tetrafluoroethylene (∼56 wt.%), vinylidene fluoride (∼27 wt.%), and propylene 

(∼17 wt.%), sold as Aflas and illustrated in Figure 1 (b), has similar structural properties to 

materials in the literature, and has previously been used as host matrix for oxygen-sensitive 
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dyes (Gillanders et al., 2004a; Gillanders et al., 2004b), and is known to have good sorption 

kinetics for organic vapours (Wang et al., 1999). 

 

A method to collect these explosives without human activity on the mine-suspected area 

would decrease the danger in field sampling. Honeybees foraging for explosives residues 

potentially have the advantage of being able to access terrain that may be difficult for 

humans or larger animals such as dogs, to safely survey. Honeybees have previously been 

used in biosensing applications for targets including radionuclides, pollutants, and 

explosives (Barisic D et al., 2002; Girotti et al., 2013; Rodacy et al., 2002; Zarić et al., 2018). 

In such an approach, the honeybees’ body hair can electrostatically attract trace particles of 

explosives as they free-fly around a contaminated area; after returning to the hive, the inner 

environment of the colony may then become rich in explosive molecules for subsequent 

detection.  

 

In this work we show for the first time an approach that combines colonies of honeybees to 

collect material across an area of landmine contaminated land, with a REST sampling 

technique to establish the presence of trace explosives in the field. We show that the 

fluoropolymer Aflas can act as an effective preconcentrator material for the accumulation of 

nitroaromatic molecules, which can later be released thermally and detected via 

luminescence quenching in a semiconducting polymer film. By placing a cartridge of tubes 

holding the adsorbent material in the entrance of a hive, bees returning from foraging may 

deposit explosive particles on the surface of the preconcentrator, which can subsequently 
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be collected and analysed. We compare this with an alternative approach in which air from 

inside the hive is pumped through a preconcentrator-coated filter for subsequent analysis.  

 

 

 

 

 

Figure 1. Chemical structures of the polymers (a) Merck Super Yellow and (b) Aflas. 
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Figure 2 –Schematic concept of preconcentrating filter. (a) Air containing the explosive 

vapour (shown as blue circles) is drawn through the filter were the molecules of the 

explosive adsorb to the polymer surface. (b) Subsequent heating of the preconcentrator 

desorbs the explosive molecules for detection by a change in the light emission from a 

separate luminescent polymer film.    

 

2. Material and Methods 

 

2.1 Polymer sensor and REST filter preparation 

Films based on Merck Super Yellow were prepared by spin coating the polymer at 2000 rpm 

from toluene solution of a concentration of 6.5 mg/ml onto 1 cm2 cover glasses (Agar 

Scientific). Prior to spin coating, the substrates were cleaned ultrasonically for 5 minutes in 

toluene, acetone and propan-2-ol, and dried in a dry nitrogen stream prior to being plasma 

ashed in a 100% oxygen plasma (Plasma Technology MiniFlecto) for 3 minutes. Film 
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thicknesses, measured with a Veeco Dektak 150 surface profilometer, were found to be in 

the region of 100 nm.  

Aflas® was purchased from AGC Chemicals Europe Ltd, and was prepared by dissolving in 

Tetrahydrofuran (Sigma Aldrich) at a concentration of 155 mg/ml. For characterisation and 

air sampling, 10 l of the solution was then drop-cast with a micropipette in a polka-dot grid 

pattern of 3x3 spots, with a mass per spot of 1-3 mg, either on silicon wafers (Approx.. 2.5 x 

2.5 cm) or standard Whatman filter paper of diameter 4.5 cm, and left to dry prior to use. 

An example image of the Aflas-spotted filter is shown in Figure 3. It can be seen that the 

uncoated surface of the paper allows for unobstructed air-flow from the air sampler. 

For in-situ placement of the preconcentration material in the hive entrance and exit, sheets 

of Whatman filter paper were blade-coated with Aflas solution as above and cut into strips 

as seen in Figure 3. The strips were placed against strips of acetate sheets and rolled into 

tubes with an approximate diameter of 1 cm. 

 

 

Figure 3 – Photograph of a coin for scale (left) with an Aflas-spotted Filter paper (middle) 

and an Aflas blade-coated substrate (right) 
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2.2 Limit of Detection of Super Yellow sensors 

To determine the limit of detection of the super yellow film to nitroaromatic molecules, and 

obtain a measure of the typical level of photoluminescence quenching due to a known mass 

of explosives, the efficiency of photoluminescence was measured for various concentrations 

of 2,4 DNT loaded into the polymer film. The Photoluminescence Quantum Yield (PLQY) of 

the Super Yellow films was measured with an integrating sphere (Greenham et al., 1995) in 

a Hamamatsu Photonics C9920-02 system with an excitation wavelength of 405 nm. The 

PLQY of the film was first measured in its pristine as-spin-coated state. The films were then 

contaminated with 2,4-DNT by drop-casting a solution of acetonitrile containing 2,4-DNT 

and allowing the solvent to evaporate. The PLQY of the contaminated films, containing 

masses of 2,4-DNT between 6 pg and 60 mg, were measured and compared with the initial 

values. The error associated with these measurements is 1% of the measured value. 

 

2.3 Preconcentration capability of Aflas 

To confirm the preconcentrating action of Aflas, the polymer was drop cast onto silicon 

wafers which were placed in a custom-built sealed chamber and exposed to 2,4-DNT 

vapours generated by flowing nitrogen vapour at a flow rate of 10 Lmin-1  over 1 g of 2,4-

DNT powder sealed in a glass tube and held at room temperature at a relative humidity of 

40-50%. After exposure to the DNT vapour stream, the samples were placed against a 

heating element in a sealed chamber of inner dimensions 53 x 53 x 53 mm, along with the 

super yellow polymer sensor film as shown in Figure 4. Silicon was used as a substrate for 
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these measurements due to its good thermal conductivity which allowed the Aflas spots to 

be heated effectively. To minimise sensor degradation via photo-oxidation in ambient 

conditions, the chamber was flushed with clean nitrogen and sealed at the start of each 

measurement.   The sensor was placed 1 cm from the preconcentrator, excited with a 405 

nm CW laser diode laser (Photonic Solutions) and its photoluminescence measured over 300 

s with a fibre coupled CCD spectrometer taking measurements every 3 s. The 

photoluminescence at room temperature was measured for 30 s, then the heater turned on 

for approximately 100 s to heat the sample to 100oC. After measurements had been 

completed the chamber was flushed again with clean nitrogen to clear the chamber of any 

residual explosive vapours.  

To confirm the preconcentration action in a simulated minefield environment, the Aflas 

polka-dotted onto Whatman filter paper discs were placed over a simulated landmine 

containing 1g of DNT in a metal container buried in soil at a depth of 2 cm as described in 

(Gillanders, 2017). The relative humidity around the simulated landmine was increased  to 

70-80% before sampling with a water mist as this has been shown to maximise the amount 

of explosive vapour emitted by a landmine (Bach and Mclean, 2003). The paper filter was 

placed into a home-made holder attached to an air sampling pump (JS Holdings HF812e). 

The filter was held above the simulated landmine, as shown in Figure 5 and air sampled at a 

rate of 60 Lmin-1 for 10 minutes.  These samples were tested in the same way described for 

the silicon samples.  
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Figure 4 – Experimental set-up for detecting the release of vapours from a heated 

preconcentrator film. 

 

Figure 5 – Schematic diagram of the approach to collect vapour and particle samples of 
explosives above a simulated landmine. 

 

2.4 Preconcentrator sampling of trace explosives in the field using honeybee colonies 

Honey bee (Apis mellifera carnica) colonies were obtained from a local beekeeper in Zadar 

County, Croatia. Three colonies were selected from an area that is not contaminated with 

land mines (Vrsi). The population of the bees in each colony was counted according to the 
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modified Liebefeld method (Delaplane et al., 2013). For the field trial colonies were selected 

with similar populations of bees, on average 20,000 per colony.  We used standard LR hives 

with two supers, a bottom board with entrance, a top board and roof. For the air sampling 

the top board and roof were removed to place the cupola on top (figure 8).  

The three colonies were located initially on a clean site to collect explosive-free control 

samples, before being moved to an explosive-contaminated site to allow sampling of 

explosive material in the preconcentrators. Once the colonies were in-situ the bees were 

allowed to free-fly, with a sucrose solution of 500 g sugar dissolved in 1.5 L tap water used 

to keep the bees within the test area of interest. The control sampling was performed near 

Vrsi (“clean site”, Figure 6) and the contaminated colony sampling was conducted on 

Benkovac test site (“test site”, Figure 6), in September 2017 and mid-April 2018. The test 

site was designed for the testing and validation of mine detectors and mine-clearance 

vehicles, with an area of 10,000 m2 and 1,000 deactivated mines buried in a series of test 

lanes. 
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Figure 6 – Sampling site map in Zadar County, Croatia. Map data ©2018 Google. 

The main approach tested to collect material gathered by the colonies was to locate 

preconcentrators at the entrance to the hives for the bees to mechanically deposit material 

onto the Aflas film. Blade-coated filter papers were cut into strips of approximately 3 cm x 

10 cm (Figure 7a), placed against a strip of acetate of the same dimensions and rolled into 

tubes prior to insertion in plastic cartridges of 4 x 1 cm2. Standard Lexan plates (1 x 1 cm 

tube) were cut into 10 cm lengths and used as a cartridge (Figure 7b), which was then 

inserted into the entrance of the hives (Figure 7c). To separate bees entering the colony 

from the bees leaving, two cartridges were used. For the bees entering the colony, the 
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cartridge is protruding from  the colony, while for the exit the cartridge was extending into 

the colony (figure 7d). Samples were left for periods of one, three days and seven days prior 

to collection. At the end of the placement period the papers were removed from the colony, 

inserted into glass vials, sealed with Parafilm then placed in airtight sealed bags and stored 

in the dark, for subsequent testing as described in section 2.3.  
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Figure 7 – (a) A substrate coated with Aflas polymer; (b) Substrates rolled up and inserted 

into the adapted entrance tubes; (c) The adapted entrance on the colony; (d) Entrance (left) 

and Exit (right) cartridges in the bottom board. 

The air from within the bee hives was also sampled after collection of the entrance 

cartridges, to compare with the samples of explosive materials deposited on the entrance 

and exit cartridges. Uncoated papers were also inserted into the cartridges to confirm 

preconcentration efficacy of the Aflas in the field. To sample the hive air, the filters were 

inserted into a home-made nozzle and attached to the colony via a specialised cupola 

(Figure 8) on the hive, with air being sampled for 10 minutes with a vacuum pump at a 

flowrate of 60 Lmin-1. The filters were then immediately placed in glass vial, sealed with 

Parafilm, and sealed in a resealable bag. 
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Figure 8 – Air sampling via specialised cupola on top of the bee hive. 
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3. Results and Discussion 

 

3.1 Limit of Detection of Super Yellow with 2,4-DNT 

Figure 9 shows the Limit of Detection via change in the PLQY of neat Super Yellow films with 

the addition of 2,4-DNT dissolved in acetonitrile. A loss in PLQY efficiency between a pristine 

film, with an initial PLQY of 40%, and a contaminated film indicates an increase in the non-

radiative recombination rate, due to photoluminescence quenching by the analyte. At sub-

ng levels the application of the 2,4-DNT solution can be seen to increase the PLQY slightly; 

this may be attributable to some swelling of the polymer caused by the solvent reducing 

non-radiative interactions between the polymer chains and thereby outweighing any 

quenching effect from trace amounts of explosives. Above ng levels however, a large loss of 

PLQY can be observed. The results suggest that below 10 ng of explosive material per cm2 

on the concentrator is required to quench luminescence at detectable levels. 
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Figure 9 - Reduction in PLQY of Super Yellow films exposed to different masses of 2,4-DNT in 

acetonitrile solution. 

 

3.2 Efficacy of Aflas as a preconcentration material 
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Figure 10 – (a) Photoluminescence emission from the Super Yellow sensor film during the 

thermal release of 2,4-DNT vapours from silicon test samples. An Aflas coated silicon 

substrate exposed to 2,4-DNT vapour (red line) is compared with a reference uncoated 

silicon substrate also previously exposed to 2,4-DNT (black line). The red box indicates the 

substrate heating time of 90 s. (b) Emission spectrum from a Super Yellow sensor before and 

after exposure to a heated preconcentrator doped with 500 ng of 2,4-DNT.  

 

The Aflas polymer is shown in Figure 10a to be a suitable adsorber for nitroaromatic 

vapours. A clean, uncoated silicon reference substrate was exposed to 2,4-DNT vapour and 

then heated in the sealed chamber shown in figure 4, while the photoluminescence 

emission from a Super Yellow film was measured. A silicon substrate coated with Aflas was 

likewise exposed to 2,4-DNT, heated, and the emission from Super Yellow monitored. The 

uncoated reference substrate can be seen to cause a decrease in Super Yellow sensor 

emission intensity of around 12%, which may in part be due to the elevated temperature 

causing some thermal and/or photo-oxidative degradation of the Super Yellow sensing film. 

However, the Aflas-coated substrate causes a much greater quenching response of 

approximately 45%, showing that explosive vapours have been adsorbed to the Aflas 

surface prior to successful thermal desorption. Figure 10b shows the decrease in 

fluorescence of Super Yellow after exposure to an Aflas substrate doped with 500 ng 2,4-

DNT. 

The process was repeated in a simulated real-world environment by sampling air into filter 

paper substrates from above a buried simulated landmine. An uncoated filter paper, and an 

Aflas-spotted filter paper were each exposed to the air above the simulated landmine. They 
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were subsequently heated in the chamber to measure the quenching response of vapours 

released onto a Super Yellow sensor film. As shown in Figure 11, the unexposed Aflas-

spotted paper filter causes approximately 10% quenching of the Super Yellow 

photoluminescence, attributable to degradation of the sensing polymer. The exposed 

uncoated filter paper gives a quenching response of around 27%, which suggests the rough, 

fibrous structure of the paper is able to trap some explosive molecules and desorb via 

heating. Plain paper has been recently shown to successfully adsorb explosive particles for 

photoacoustic sensing (Sharma et al., 2017). However, a clear quenching response of over 

70% is shown by the Aflas-spotted filter paper exposed to 2,4-DNT vapour. In addition to the 

Aflas polymer sorbing vapours of the 2,4-DNT, the spots on the filter were found to pick up 

particles of dust and dirt from the sampling area more effectively than paper alone, further 

increasing the effectiveness of the filter.  
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Figure 11 – Photoluminescence emission from a Super Yellow sensor film during the thermal 

release of 2,4-DNT vapours from filter paper samples previously exposed to DNT vapours 

from a simulated landmine. Data show the responses to an uncontaminated Aflas-spotted 

filter paper (Reference, black line), uncoated filter paper (Paper, red line), and an Aflas-

spotted filter paper (blue line). The red box indicates the substrate heating time of 90 s. 

 

3.3 Preconcentrator sampling of trace explosives in the field using honeybee colonies 

Following the initial validation tests of the preconcentrators, samples collected from the test 

mine field were subsequently analysed. Preconcentrators taken from the entrance and exit 

cartridges in the hives were heated to release sorbed molecules and the photoluminescence 

from Super Yellow films was measured as described in section 2.3. The sensing results of a 

single hive entrance and exit sampling in September 2017 are shown in Figure 12, while 

averaged results from three hives (two hives on the Clean Site) in April 2018 are shown in 

Figure 13. The horizontal black line is the benchmark average loss of luminescence from 

three separate control measurements (of an unused Aflas filter) due to photo-oxidation of 

the Super yellow film in atmospheric conditions. It can be seen in Figure 12 that the highest 

quenching response is from the preconcentrator samples collected at the hive entrance 

after one day on-site. Weather data from the sampling period shown in Figure 12 show less 

favourable conditions in terms of temperature and wind speed on the third and seventh 

days thereby reducing bee activity. For instance, the temperature on the first day had a 

minimum of 16°C while the other two sampling days had minimums of 12°C and 9.8°C 

respectively, which may have reduced bee activity. There was also heavy rainfall of 123.1 

mm between collecting the three-day and seven-day samples in the Benkovac region at that 
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time, which would have reduced foraging and may have inhibited explosive vapour release 

at ground level.  

The spread of responses over the trial periods may be attributed to several factors chiefly 

including the weather (e.g. during strong winds the bees will remain inside the hive) or 

potentially bees finding a reliable pollen (protein) food source after 24-48 hours on-site. 

 

Figure 12 – Response to vapours released after 90 seconds’ heating of the preconcentrator 

strips from a single hive entrance in September 2017; sampled both before placement at, 

and following 1, 3 and 7 days located on, the test minefield. Bars show the average fraction 

of the initial photoluminescence intensity remaining after exposure to molecules released 

from the heated preconcentrator, while crosses show individual measurements. Each bar is 

an average of three measurements, while the dotted horizontal lines show the standard 

0.80

0.85

0.90

0.95

1.00

1.05

1.10

E
m

is
s
io

n
 i
n
te

n
s
it
y
 (

a
.u

)

      Hive Entrance 

      Hive Exit

Clean 1 Day 3 Days 7 Days

Colony Time on Field

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

deviation from the averaged reference. Red bars show results for preconcentrators at the 

hive entrance while blue bars show results for preconcentrators at the exit.  

 

Figure 13 – Response to vapours released from the preconcentrator strips after 90 seconds 

heating - results averaged from three hives on the minefield over three days in April 2018. 

The bars show the average fraction of the initial photoluminescence intensity remaining 

after exposure to molecules released from the heated preconcentrator, while crosses show 

individual measurements. The horizontal line shows the average response from a blank 

measurement. “Hive entrance” refers to Aflas-coated papers in the hive entrance, “Hive 

Entrance Blank" refers to uncoated papers in the hive entrance; “Hive Exit” refers to Aflas-

coated papers in the hive exit, and “Hive Exit Blank” refers to uncoated papers in the hive 

exit.  
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Figure 14 shows the response of the Super Yellow sensor to vapours released from 

preconcentrator filters loaded by air-pumping from within a hive. The figure shows 

indicative measurements taken over a 3 day period for a hive located on the test minefield.  

The samples taken from within the colonies show similar levels of luminescence quenching 

from the air-sampled preconcentrator as those from the entrance preconcentrators. This 

indicates that some quantities of explosive molecules may accumulate in the colony even 

after adsorbing to those in the entrance cartridges, and there is potentially enough 

explosive material collected inside the colony to be air-sampled and detected.  

 

Figure 14 – Response to vapours released from the preconcentrator air filters after 100 

seconds’, sampled from within a hive, following 1, 2 and 3 days located on the test 

minefield. Bars show the fraction of the initial photoluminescence intensity remaining after 

exposure to molecules released from the heated preconcentrator.  
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4. Conclusions 

An inexpensive, commercially-available preconcentrator polymer was used to efficiently 

adsorb explosive materials, which could subsequently be released thermally for detection 

using a photoluminescence quenching sensor. Preconcentration was tested in the field with 

honeybee colonies used as a biological sampling approach to gather residues of buried 

explosives over an area. The honeybees were allowed to free-fly around a test site with 

known landmine presence, to allow explosive molecules to be picked up electrostatically by 

the bees’ body hair. On return to the hive, the bees passed through a tube lined with the 

preconcentration polymer to accumulate gathered residues. The preconcentrator was 

subsequently heated in a sealed chamber and the released vapours were detected via 

luminescence quenching of the conjugated polymer Super Yellow. These results indicate a 

preconcentrator at the hive entrance has potential for collecting gathered explosive 

materials. This technique was shown for the first time, to the best of our knowledge, and 

could provide a pathway to real-time identification of explosives in the field. While the 

results are still at an early stage, we expect that improvements in the sampling methods 

could provide a robust, inexpensive system to aid humanitarian demining efforts worldwide. 
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Appendix A: Supporting Information 

Data supporting this research can be found at https://doi.org/10.17630/1b2fa689-d709-

4276-8161-ea7918c17716.  
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