30 research outputs found

    Oxidation states and magnetism of Fe nanoparticles prepared by a laser evaporation technique

    Get PDF
    Nanoparticles of iron and iron oxide have been prepared in a thermal diffusion cloud chamber using pulsed laser evaporation. SEM/TEM studies of these particles reveal a size distribution with a mean diameter of about 60 Å. This is consistent with the mean particle size estimated from the magnetic data. The oxidation levels of these nanoparticles prepared at different partial oxygen pressures were investigated using FTIR. All the samples are found to exhibit superparamagnetism with blocking temperatures ranging from 50 K to above room temperature. Magnetic anisotropy constants are calculated from the frequency dependence of the blocking temperatures are found to be one quarter of magnitude higher than is known for the bulk

    Cancer associated talin point mutations disorganise cell adhesion and migration

    Get PDF
    Talin-1 is a key component of the multiprotein adhesion complexes which mediate cell migration, adhesion and integrin signalling and has been linked to cancer in several studies. We analysed talin-1 mutations reported in the Catalogue of Somatic Mutations in Cancer database and developed a bioinformatics pipeline to predict the severity of each mutation. These predictions were then assessed using biochemistry and cell biology experiments. With this approach we were able to identify several talin-1 mutations affecting integrin activity, actin recruitment and Deleted in Liver Cancer 1 localization. We explored potential changes in talin-1 signalling responses by assessing impact on migration, invasion and proliferation. Altogether, this study describes a pipeline approach of experiments for crude characterization of talin-1 mutants in order to evaluate their functional effects and potential pathogenicity. Our findings suggest that cancer related point mutations in talin-1 can affect cell behaviour and so may contribute to cancer progression

    Capturing complex tumour biology in vitro: Histological and molecular characterisation of precision cut slices

    Get PDF
    Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1α. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means

    Capturing complex tumour biology in vitro : histological and molecular characterisation of precision cut slices

    Get PDF
    Precision-cut slices of in vivo tumours permit interrogation in vitro of heterogeneous cells from solid tumours together with their native microenvironment. They offer a low throughput but high content in vitro experimental platform. Using mouse models as surrogates for three common human solid tumours, we describe a standardised workflow for systematic comparison of tumour slice cultivation methods and a tissue microarray-based method to archive them. Cultivated slices were compared to their in vivo source tissue using immunohistochemical and transcriptional biomarkers, particularly of cellular stress. Mechanical slicing induced minimal stress. Cultivation of tumour slices required organotypic support materials and atmospheric oxygen for maintenance of integrity and was associated with significant temporal and loco-regional changes in protein expression, for example HIF-1 alpha. We recommend adherence to the robust workflow described, with recognition of temporal-spatial changes in protein expression before interrogation of tumour slices by pharmacological or other means.Peer reviewe

    Ceramic-like membranes without sintering via alkali activation of metakaolin, blast furnace slag, or their mixture:characterization and cation-exchange properties

    No full text
    Abstract Alkali-activated (or geopolymer) membranes have emerged recently as an alternative for conventional ceramic membranes. Their main benefit is the simple and low-energy manufacturing not requiring sintering, and thus potential for clearly lower costs, while having largely similar performance as conventional ceramic materials. In this work, metakaolin, blast furnace slag, and their mixture (representing typical low, high, and medium Ca-content raw materials, respectively) were compared as aluminosilicate precursors for the preparation of self-supporting membrane disks (diameter 75 mm, height 3 mm). A thorough material characterization was performed to evaluate mechanical strength, shrinkage, microstructure, chemical composition, pore size distribution, specific surface area, zeta potential, and water flux at different temperatures (20–60 °C) and pressures (200–1000 kPa). Based on this screening, metakaolin-based membrane (i.e., the low-calcium system) indicated overall better performance than the two others based on blast furnace slag or their mixture. As a final part of the study, ammonium-containing model effluent ([NH4+] = 50 mg L⁻¹) was distributed through the membrane (using 200 kPa pressure at 25 °C) to evaluate the potential for nitrogen removal and recovery. The mass balance examination indicated that ammonium was retained in the membrane matrix (i.e., not concentrated in the retentate fraction), and thus the likely removal mechanism was via ion-exchange. The obtained results provide interesting insights for the further development of alkali-activated membranes for applications requiring ammonium nitrogen removal, such as membrane bioreactors in municipal wastewater treatment

    Precision systems medicine in urological Tumors – Molecular profiling and functional testing

    Get PDF
    Background: Most precision cancer medicine efforts are based on the identification of oncogenic driver mutations by genome sequencing. We believe and have emerging evidence that this will miss therapeutic opportunities and additional technologies, such as cell-based functional testing should be included. Pioneering studies in leukemia indicate the value of ex-vivo drug testing to identify novel, clinically actionable therapeutic opportunities. Methods: Using conditional re-programming technology, we established patient-derived cells (PDCs) from castration-resistant prostate cancer (CRPC)3 and renal cell cancer (RCC) in order to pilot precision systems medicine in solid tumours. The PDCs were compared with primary tumour tissue by genomic profiling and then subjected to drug sensitivity profiling with >306 approved and investigational oncology drugs. Results: Here, we generated both benign and malignant PDCs from prostate tissue, including six benign PDCs that were androgen receptor (AR)-negative, basal/transit-amplifying phenotype, but could re-express AR in 3D-culture. The PDCs from a CRPC patient displayed multiple CNAs, some of which were shared with the parental tumor. The cancer-selective drug profile for these PDCs showed sensitivity to taxanes, navitoclax, bexarotene, tretinoin, oxaliplatin and mepacrine3. RCC displays extensive intra-tumour heterogeneity and clonal evolution. There is, however, very little information on how much this impacts drug sensitivities. Therefore, we generated several PDCs from each RCC patient across multiple tumour regions. We verified their clonal relationship with the uncultured tumour tissue by NGS and performed drug sensitivity profiling. The PDCs retained CNAs and driver mutations in e.g. VHL, PBRM1, PIK3C2A, KMD5C, TSC2 genes present in the original tumour tissue. Drug testing with 461 oncology drugs identified shared vulnerability among the multiple PDCs to pazopanib and temsirolimus that inhibit well-established renal cancer pathways EGFR/PDGFR/ FGFR and mTOR. Importantly, however, the individual PDC from different regions in one patient also showed distinct drug response profiles, confirming that genomic heterogeneity leads to variability in drug responses. Conclusions: Our aim is to generate molecular profiles and drug testing data using representative PDCs from each patient to help clinicians in treatment decision and to facilitate the early selection of the best drug candidates for clinical development. We believe this approach will help to personalize treatment, prioritize drugs for clinical testing, provide for intelligent selection of drug combinations and improve treatment outcomes.Non peer reviewe

    Talin variant P229S compromises integrin activation and associates with multifaceted clinical symptoms

    Get PDF
    Adhesion of cells to the extracellular matrix (ECM) must be exquisitely coordinated to enable development and tissue homeostasis. Cell-ECM interactions are regulated by multiple signalling pathways that coordinate the activation state of the integrin family of ECM receptors. The protein talin is pivotal in this process and talin’s simultaneous interactions with the cytoplasmic tails of the integrins and the plasma membrane are essential to enable robust, dynamic control of integrin activation and cell-ECM adhesion. Here we report the identification of a de novo heterozygous c.685C>T (p.Pro229Ser) variant in the TLN1 gene from a patient with a complex phenotype. The mutation is located in the talin head region at the interface between the F2 and F3 domains. The characterisation of this novel p.P229S talin variant reveals the disruption of adhesion dynamics that result from disturbance of the F2-F3 domain interface in the talin head. Using biophysical, computational and cell biological techniques we find that the variant perturbs the synergy between the integrin-binding F3 and the membrane-binding F2 domains, compromising integrin activation, adhesion and cell migration. Whilst this remains a variant of uncertain significance, it is probable that the dysregulation of adhesion dynamics we observe in cells contributes to the multifaceted clinical symptoms of the patient and may provide insight into the multitude of cellular processes dependent on talin-mediated adhesion dynamics
    corecore