115 research outputs found

    Eine unbekannte griechische Zeitung aus dem Jahre 1784

    Get PDF

    The Relationship Between Dopamine, Novelty Seeking, and Cognitive Flexibility

    Get PDF
    The aim of this study was to investigate whether dopamine levels (as measured by the spontaneous eye blink) correlate to novelty seeking and whether dopamine and novelty seeking moderate performance on a cognitive flexibility task. While we found an effect of task condition, neither dopamine nor novelty seeking influenced performance on the cognitive flexibility task

    ZnO nanowires grown on Al2O3-ZnAl2O4 nanostructure using solid-vapor mechanism

    Full text link
    We present Al2O3-ZnAl2O4-ZnO nanostructure, which could be a prominent candidate for optoelectronics, mechanical and sensing applications. While ZnO and ZnAl2O4 composites are mostly synthesized by sol-gel technique, we propose a solid-vapor growth mechanism. To produce Al2O3-ZnAl2O4-ZnO nanostructure, we conduct ZnO:C powder heating resulting in ZnO nanowires (NWs) growth on sapphire substrate and ZnAl2O4 spinel layer at the interface. The nanostructure was examined with Scanning Electron Microscopy (SEM) method. Focused Ion Beam (FIB) technique enabled us to prepare a lamella for Transmission Electron Microscopy (TEM) imaging. TEM examination revealed high crystallographic quality of both spinel and NW structure. Epitaxial relationships of Al2O3-ZnAl2O4 and ZnAl2O4-ZnO are given.Comment: Conference: 13th Polish-Japanese Joint Seminar on Micro and Nano Analysi

    Imaging and multi-omics datasets converge to define different neural progenitor origins for ATRT-SHH subgroups

    Get PDF
    Atypical teratoid rhabdoid tumors (ATRT) are divided into MYC, TYR and SHH subgroups, suggesting diverse lineages of origin. Here, we investigate the imaging of human ATRT at diagnosis and the precise anatomic origin of brain tumors in the Rosa26-CreERT2^{ERT2}::Smarcb1flox/flox^{flox/flox} model. This cross-species analysis points to an extra-cerebral origin for MYC tumors. Additionally, we clearly distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions. Molecular characteristics point to the midbrain-hindbrain boundary as the origin of CAL SHH ATRT, and to the ganglionic eminence as the origin of BG/IV SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-differentiation process mediated by repressors of the neuronal program such as REST, ID and the NOTCH pathway

    Numerical modeling of the nonlinear mechanical behavior of multilayer geosynthetic system for piggyback landfill expansions

    Get PDF
    This paper was accepted for publication in the journal Geotextiles and Geomembranes and the definitive published version is available at http://dx.doi.org/10.1016/j.geotexmem.2016.07.004.Numerical modelling techniques have been increasingly used to assess the integrity of engineering works, such as landfills, that involve interactions between multiple geosynthetics GSYs). In piggyback landfill expansions (PBLEs), where a new landfill is built over an older one, such interactions are particularly important because multiple GSYs, natural materials, and waste interact with each over. To obtain reliable numerical results, the real mechanical behavior of the GSYs and of the interfaces between GSYs must be considered. Designers, however, often use simplistic assumptions without further analyzing the implications of these assumptions on the results. Such simplifications mainly concern the nonlinear axial stiffness of GSYs, the strain softening at interfaces between GSYs, and the difference between the compressive and tensile behavior of GSYs. By, considering these key aspects, the present study aims to understand the extent to which the results of numerical calculations can be influenced both by the differing compressive and tensile behavior of GSYs and by the assumption of strain softening at interfaces between GSYs. For this purpose, several numerical models are implemented by using the finite-difference code FLAC 2D on a typical PBLE that involves four GSYs and six interfaces. The present work also applies comprehensive, state-of-the-art numerical modelling to study the interactions between multiple layers of GSYs. This study also investigates the nonlinear axial stiffness of GSYs through a series of uniaxial tensile tests. The numerical results show that, if the GSY axial compressive and tensile characteristics are the same, then tensile force is minimized, which induces significant compressive force in the GSYs. The results also indicate that neglecting strain softening at the interface between GSYs affects interface shear stresses, displacements of GSYs at the interface, and the GSY force distribution, potentially rendering the model unrealistic. Including strain softening, however, allows the assessment (location) of unstable areas along the interface where large displacements occur
    corecore