180 research outputs found

    Work function tuning of tin-doped indium oxide electrodes with solution-processed lithium fluoride

    Get PDF
    Solution-processed lithium fluoride (sol-LiF) nanoparticles synthesized in polymeric micelle nanoreactors enable tuning of the surface work function of tin-doped indium oxide (ITO) films. The micelle reactors provide the means for controlling surface coverage by progressively building up the interlayer through alternating deposition and plasma etch removal of the polymer. In order to determine the surface coverage and average interparticle distance, spatial point pattern analysis is applied to scanning electron microscope images of the nanoparticle dispersions. The work function of the sol-LiF modified ITO, obtained from photoelectron emission yield spectroscopy analysis, is shown to increase with surface coverage of the sol-LiF particles, suggesting a lateral depolarization effect. Analysis of the photoelectron emission energy distribution in the near threshold region reveals the contribution of surface states for surface coverage in excess of 14.1%. Optimization of the interfacial barrier is achieved through contributions from both work function modification and surface states

    Contribution of citizen science towards international biodiversity monitoring

    Get PDF
    To meet collective obligations towards biodiversity conservation and monitoring, it is essential that the world's governments and non-governmental organisations as well as the research community tap all possible sources of data and information, including new, fast-growing sources such as citizen science (CS), in which volunteers participate in some or all aspects of environmental assessments. Through compilation of a database on CS and community-based monitoring (CBM, a subset of CS) programs, we assess where contributions from CS and CBM are significant and where opportunities for growth exist. We use the Essential Biodiversity Variable framework to describe the range of biodiversity data needed to track progress towards global biodiversity targets, and we assess strengths and gaps in geographical and taxonomic coverage. Our results show that existing CS and CBM data particularly provide large-scale data on species distribution and population abundance, species traits such as phenology, and ecosystem function variables such as primary and secondary productivity. Only birds, Lepidoptera and plants are monitored at scale. Most CS schemes are found in Europe, North America, South Africa, India, and Australia. We then explore what can be learned from successful CS/CBM programs that would facilitate the scaling up of current efforts, how existing strengths in data coverage can be better exploited, and the strategies that could maximise the synergies between CS/CBM and other approaches for monitoring biodiversity, in particular from remote sensing. More and better targeted funding will be needed, if CS/CBM programs are to contribute further to international biodiversity monitoring

    Continental-Scale Assessment of Risk to the Australian Odonata from Climate Change

    Get PDF
    Climate change is expected to have substantial impacts on the composition of freshwater communities, and many species are threatened by the loss of climatically suitable habitat. In this study we identify Australian Odonata (dragonflies and damselflies) vulnerable to the effects of climate change on the basis of exposure, sensitivity and pressure to disperse in the future. We used an ensemble of species distribution models to predict the distribution of 270 (85%) species of Australian Odonata, continent-wide at the subcatchment scale, and for both current and future climates using two emissions scenarios each for 2055 and 2085. Exposure was scored according to the departure of temperature, precipitation and hydrology from current conditions. Sensitivity accounted for change in the area and suitability of projected climatic habitat, and pressure to disperse combined measurements of average habitat shifts and the loss experienced with lower dispersal rates. Streams and rivers important to future conservation efforts were identified based on the sensitivity-weighted sum of habitat suitability for the most vulnerable species. The overall extent of suitable habitat declined for 56–69% of the species modelled by 2085 depending on emissions scenario. The proportion of species at risk across all components (exposure, sensitivity, pressure to disperse) varied between 7 and 17% from 2055 to 2085 and a further 3–17% of species were also projected to be at high risk due to declines that did not require range shifts. If dispersal to Tasmania was limited, many south-eastern species are at significantly increased risk. Conservation efforts will need to focus on creating and preserving freshwater refugia as part of a broader conservation strategy that improves connectivity and promotes adaptive range shifts. The significant predicted shifts in suitable habitat could potentially exceed the dispersal capacity of Odonata and highlights the challenge faced by other freshwater species

    Assessing the conservation value of waterbodies: the example of the Loire floodplain (France)

    Get PDF
    In recent decades, two of the main management tools used to stem biodiversity erosion have been biodiversity monitoring and the conservation of natural areas. However, socio-economic pressure means that it is not usually possible to preserve the entire landscape, and so the rational prioritisation of sites has become a crucial issue. In this context, and because floodplains are one of the most threatened ecosystems, we propose a statistical strategy for evaluating conservation value, and used it to prioritise 46 waterbodies in the Loire floodplain (France). We began by determining a synthetic conservation index of fish communities (Q) for each waterbody. This synthetic index includes a conservation status index, an origin index, a rarity index and a richness index. We divided the waterbodies into 6 clusters with distinct structures of the basic indices. One of these clusters, with high Q median value, indicated that 4 waterbodies are important for fish biodiversity conservation. Conversely, two clusters with low Q median values included 11 waterbodies where restoration is called for. The results picked out high connectivity levels and low abundance of aquatic vegetation as the two main environmental characteristics of waterbodies with high conservation value. In addition, assessing the biodiversity and conservation value of territories using our multi-index approach plus an a posteriori hierarchical classification methodology reveals two major interests: (i) a possible geographical extension and (ii) a multi-taxa adaptation

    Changes in hemostasis parameters in nonfatal methicillin-sensitive Staphylococcus aureus bacteremia complicated by endocarditis or thromboembolic events : a prospective gender-age adjusted cohort study

    Get PDF
    The aim of this study was to examine the changes in hemostasis parameters in endocarditis and thromboembolic events in nonfatal methicillin-sensitive Staphylococcus aureus bacteremia (MS-SAB) - a topic not evaluated previously. In total, 155 patients were recruited and were categorized according to the presence of endocarditis or thromboembolic events with gender-age adjusted controls. Patients who deceased within 90 days or patients not chosen as controls were excluded. SAB management was supervised by an infectious disease specialist. Patients with endocarditis (N = 21), compared to controls (N = 21), presented lower antithrombin III at day 4 (p <0.05), elevated antithrombin III at day 90 (p <0.01), prolonged activated partial thromboplastin time at days 4 and 10 (p <0.05), and enhanced thrombin-antithrombin complex at day 4 (p <0.01). Thromboembolic events (N = 8), compared to controls (N = 34), significantly increased thrombin-antithrombin complex at day 4 (p <0.05). In receiver operating characteristic analysis, the changes in these hemostasis parameters at day 4 predicted endocarditis and thromboembolic events (p <0.05). No differences in hemoglobin, thrombocyte, prothrombin fragment, thrombin time, factor VIII, D-dimer or fibrinogen levels were observed between cases and controls. The results suggest that nonfatal MS-SAB patients present marginal hemostasis parameter changes that, however, may have predictability for endocarditis or thromboembolic events. Larger studies are needed to further assess the connection of hemostasis to complications in SAB.Peer reviewe

    Finding the essential : improving conservation monitoring across scales

    Get PDF
    To account for progress towards conservation targets, monitoring systems should capture not only information on biodiversity but also knowledge on the dynamics of ecological processes and the related effects on human well-being. Protected areas represent complex social-ecological systems with strong human-nature interactions. They are able to provide relevant information about how global and local scale drivers (e.g., climate change, land use change) impact biodiversity and ecosystem services. Here we develop a framework that uses an ecosystem-focused approach to support managers in identifying essential variables in an integrated and scalable approach. We advocate that this approach can complement current essential variable developments, by allowing conservation managers to draw on system-level knowledge and theory of biodiversity and ecosystems to identify locally important variables that meet the local or sub-global needs for conservation data. This requires the development of system narratives and causal diagrams that pinpoints the social-ecological variables that represent the state and drivers of the different components, and their relationships. We describe a scalable framework that builds on system based narratives to describe all system components, the models used to represent them and the data needed. Considering the global distribution of protected areas, with an investment in standards, transparency, and on active data mobilisation strategies for essential variables, these have the potential to be the backbone of global biodiversity monitoring, benefiting countries, biodiversity observation networks and the global biodiversity community

    Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions

    Get PDF
    Although satellite-based variables have for long been expected to be key components to a unified and global biodiversity monitoring strategy, a definitive and agreed list of these variables still remains elusive. The growth of interest in biodiversity variables observable from space has been partly underpinned by the development of the essential biodiversity variable (EBV) framework by the Group on Earth Observations – Biodiversity Observation Network, which itself was guided by the process of identifying essential climate variables. This contribution aims to advance the development of a global biodiversity monitoring strategy by updating the previously published definition of EBV, providing a definition of satellite remote sensing (SRS) EBVs and introducing a set of principles that are believed to be necessary if ecologists and space agencies are to agree on a list of EBVs that can be routinely monitored from space. Progress toward the identification of SRS-EBVs will require a clear understanding of what makes a biodiversity variable essential, as well as agreement on who the users of the SRS-EBVs are. Technological and algorithmic developments are rapidly expanding the set of opportunities for SRS in monitoring biodiversity, and so the list of SRS-EBVs is likely to evolve over time. This means that a clear and common platform for data providers, ecologists, environmental managers, policy makers and remote sensing experts to interact and share ideas needs to be identified to support long-term coordinated actions
    • 

    corecore