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16Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Göteborg, Sweden
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31ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
32Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
33NSW Office of Environment and Heritage, PO Box A290, Sydney South, NSW 1232, Australia
34Australian Museum, 6 College Street, Sydney, NSW 2000, Australia
35Consultant, Data Policy and Management, P.O. Box 305, Callicoon, NY 12723, U.S.A.
36Massive Connections, 2410 17th St NW, Apt 306, Washington, DC 20009, U.S.A.
37School of Computer Science & Informatics, Cardiff University, Queens Buildings, 5 The Parade, Cardiff, CF24 3AA, U.K.

ABSTRACT

Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for
assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to
structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources
to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we
assess the challenges of a ‘Big Data’ approach to building global EBV data products across taxa and spatiotemporal
scales, focusing on species distribution and abundance. The majority of currently available data on species distributions
derives from incidentally reported observations or from surveys where presence-only or presence–absence data are
sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or
from population time series using standardized protocols (e.g. repeated surveys of the same population from single or
multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time,
taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases
introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents,
harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models
for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the
development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify
11 key workflow steps that will operationalize the process of building EBV data products within and across research
infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification
and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling
of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional
monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet
Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and
aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and
accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain
to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous,
multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging
methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and
satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution
of workflows and the production process/cycle as well as approaching technical interoperability among research
infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing
consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from
restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for
assessing progress towards conservation policy targets and sustainable development goals.

Key words: big data, biodiversity monitoring, data interoperability, ecological sustainability, environmental policy, global
change research, indicators, informatics, metadata, research infrastructures.
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I. INTRODUCTION

The diversity of life on Earth is intrinsically and pragmatically
essential, and provides vital services to humanity (Millennium
Ecosystem Assessment, 2005). Despite recognition of this

fact and ongoing conservation efforts, biodiversity continues
to be lost globally at an alarming rate (Tittensor et al.,

2014). Current extinction rates of species may be 100
times higher than the ‘background’ rate from fossil records
(Pereira, Navarro & Martins, 2012; Ceballos et al., 2015).
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Many populations of widespread and threatened species are
declining (Butchart et al., 2010; Tittensor et al., 2014) and
invasive alien species continue to spread into many parts
of the world (van Kleunen et al., 2015). Combined with
human exploitation of terrestrial and marine ecosystems,
these factors result in an Earth system that is stretched
beyond sustainability (Newbold et al., 2016). Reversing such
trends is part of the focus of the 20 Aichi Targets developed
by Parties to the United Nations (UN) Convention on
Biological Diversity (CBD), and of the 17 Sustainable
Development Goals (SDGs) identified by the UN 2030
Agenda for Sustainable Development.

Enormous challenges remain for global biodiversity con-
servation and ecological sustainability, even for simply assess-
ing reliably the progress towards achieving Aichi Targets
and SDGs, especially at a global scale. These include finding
mechanisms to fill known data gaps (Meyer et al., 2015; Skid-
more et al., 2015; Amano, Lamming & Sutherland, 2016),
to standardize data and make them available and accessible
(Reichman, Jones & Schildhauer, 2011), and to develop the
technical tools and sustainable e-infrastructure that supports
discovery, analysis, access, dissemination and persistent
storage of the increasingly complex data sets needed to
quantify biodiversity change at a global scale (Hardisty,
Roberts & The Biodiversity Informatics Community, 2013;
Hobern et al., 2013; Kissling et al., 2015; Hugo et al., 2017).

To address these challenges, the Group on Earth
Observations Biodiversity Observation Network (GEO
BON) has introduced the framework of Essential Biodiversity
Variables (EBVs) (Pereira et al., 2013). EBVs can be
considered to be biological state variables with three key
dimensions (time, space, and biological organization) that
are critical to document biodiversity change accurately
(Schmeller et al., in press). Moreover, EBVs represent
harmonized data that are conceptually located on a
continuum between primary data observations (‘raw data’)
and synthetic or derived indices (‘indicators’) (Fig. 1). Similar
to Essential Climate Variables – which are designed to
provide an empirical basis for understanding past, current
and possible future climate variability and change (Bojinski
et al., 2014) – the EBV framework has been developed to
help in prioritizing a minimum set of essential measurements
for the consistent study, reporting and management of the
major dimensions of biodiversity change (Pereira et al., 2013).

A total of 22 candidate EBVs are proposed by GEO
BON within six EBV classes (i.e. genetic composition,
species populations, species traits, community composition,
ecosystem functioning and ecosystem structure) (Pereira
et al., 2013). These categories of critical biodiversity data
provide the motivation and necessary framework for
standardizing the global biodiversity data needed for
research, management and policy (Geijzendorffer et al., 2016;
Proença et al., in press). EBVs thus provide the foundation
for consistent derivation of biodiversity indicators that allow
repeated assessments of progress against national and global
conservation targets and sustainability goals (Turak et al., in
press b; Pereira et al., 2013). EBVs can contribute to a range of

policy initiatives, such as the global and regional assessments
conducted through the Intergovernmental Platform on
Biodiversity and Ecosystem Services (IPBES, 2016) or annual
reporting by countries to the CBD against their National
Biodiversity Strategies and Action Plans (NBSAPs).

A major concern that arises from these efforts is how
to build useful EBV data products with global coverage
using current technology (Kissling et al., 2015). From several
perspectives, this is the ‘Big Data’ challenge in biodiversity
science today (Hampton et al., 2013). It requires dealing
with massive volumes of data not readily handled by the
usual data tools and practices, establishment of relationality
between different data, ensuring data quality, aggregation,
cross-referencing and making such data searchable and
available (Kelling et al., 2015; Enquist et al., 2016; La Salle,
Williams & Moritz, 2016; Wilkinson et al., 2016). Ideally,
the primary data required to build EBV data products
should be contributed from any research or observation
infrastructure, no matter at which spatial or temporal scale
they had been collected. Multiple scientific, technical and
legal challenges – such as the need for data harmonization
and metadata standardization, provision of analytical tools
and services for EBV data processing, and open access
licenses that allow the interoperability and sharing of relevant
data – have to be addressed to produce reliable EBV data
products (Kissling et al., 2015).

Quantifying and predicting variations in species
distributions and population size is of high importance
for biodiversity research, management and policy efforts.
For instance, knowledge on the geographic distribution of
species and variation in population structure and abundance
is central to understanding ecological and biogeographical
dynamics (Begon, Townsend & Harper, 2006; Lomolino
et al., 2010). Moreover, species distribution and abundance
underpins policy indicators to quantify population trends and
extinction risk for threat categorization (Butchart et al., 2010),
assessments of range dynamics (Schurr et al., 2012), spread
of invasive species (McGeoch et al., 2010) and biodiversity
responses to climate change (Stephens et al., 2016) and
habitat conversion (Newbold et al., 2016). Within the EBV
concept, such essential knowledge is captured in the EBV
class ‘species populations’, represented by three candidate
EBVs (Pereira et al., 2013, 2017): ‘species distribution’,
‘population abundance’ and ‘population structure’. Given
the societal and scientific relevance of geographic data on
the distribution and abundance of species (e.g. Butchart et al.,

2010; McGeoch et al., 2010; Jetz, McPherson & Guralnick,
2012; Schmeller et al., 2017) and a high maturity level
of the research infrastructure and biodiversity monitoring
community (e.g. Constable et al., 2010; Ahumada, Hurtado
& Lizcano, 2013; Hobern et al., 2013; Sullivan et al., 2014;
La Salle et al., 2016), it is important to explore which barriers
and bottlenecks currently prevent the global implementation
of species distribution and abundance EBVs.

Here, we review the wider scientific, technical and legal
issues pertinent to building EBV data products at a global
scale. We specifically focus on the candidate EBVs ‘species
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Fig. 1. Essential Biodiversity Variables (EBVs) are part of an information supply chain, conceptually positioned between raw data
(i.e. primary data observations) and indicators (i.e. synthetic indices for reporting biodiversity change to policy and management).
They can be illustrated as a data cube with three basic dimensions (taxonomy, time and space), covering different species (sp1, sp2,
. . .) at different points in time (t1, t2, . . .) and different locations (xy1, xy2, . . .). From the observations (i.e. sampling of raw data),
different EBV data products can be obtained with different steps of data processing. We here distinguish EBV-useable data sets,
EBV-ready data sets and derived and modelled EBV data. They represent measurements with comparable measurement units or
similar observation protocols (EBV-useable data sets), harmonized data sets (EBV-ready data sets) and data products derived from
processing data with statistical models (derived and modelled EBV data). These EBV data products can be used in various ways
to derive indicators (Ind 1, Ind 2, . . . ) that quantify spatiotemporal changes in species distributions and population abundances or
other aspects of biodiversity. The four images under raw data are freely available at http://www.clipartpanda.com

distribution’ and ‘population abundance’ in the EBV class
‘species populations’. We start by defining the two selected
EBVs and their key dimensions (space, time and taxonomy),
attributes (extent, resolution, measurement unit) and uncer-
tainties. We then provide a brief overview of existing sources
of species distribution and abundance data, discuss key
requirements for data harmonization and highlight emerging
methods and technologies for data collection. We propose 11
key workflow steps for building EBV data products on species
distributions and population abundances and highlight legal
and technical barriers for a workflow-oriented production
of EBV data products. We summarize continuing efforts
to develop relevant metadata standards for EBV workflows
and outline how metadata standards for EBV data products
could be developed. Finally, we conclude with the current
challenges for building global EBV data products and

summarize scientific, technical and legal constraints on
implementing EBV workflows at a global scale.

II. EBV DEFINITION

(1) The species distribution EBV

The EBV ‘species distribution’ can be defined as the presence
or absence of species, based on observations with specified
spatial and temporal dimensions. In most cases, the species
distribution EBV is therefore represented through a binary
variable that reflects presence–absence of a species across
its geographic range. Beyond a binary quantification, species
distributions can be estimated by using species distribution
models (SDMs) to predict relative likelihoods, probabilities of
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6 W. Daniel Kissling and others

observation or probabilities of occupancy, dependent on the
available data (MacKenzie et al., 2006; Elith & Leathwick,
2009; Guillera-Arroita et al., 2015).

(2) The population abundance EBV

The candidate EBV ‘population abundance’ can be defined
as population sizes based on observations with specified
spatial and temporal dimensions. The population abundance
EBV is therefore represented by a continuous variable
expressing harmonized quantities for each taxon across
space and time. Depending on the available type of raw
data, methods mostly estimate relative abundance or relative
density, but others may be useful for estimating actual
densities (e.g. counts per unit area). Interpolation of localized
measurements with geostatistical methods or modelling
of abundance across a species’ geographic range with
environmental covariates provides ways to obtain spatially
explicit representations of population abundance (Potts &
Elith, 2006).

(3) Relationship between species distribution and
population abundance EBVs

The species distribution EBV and the population abundance
EBV are closely related to each other. The population
abundance EBV contains richer information than the
species distribution EBV, i.e. a continuous variable that
describes not only the presence of populations of a species
but also the population size per unit area throughout its
geographic range. Species distribution data are usually much
easier to collect than population abundance data because
they only require the recorded presence of one individual
rather than estimates of the absolute or relative number
of individuals. Hence, only a few large-scale and long-term
monitoring projects, such as the North American Breeding
Bird Survey (Sauer et al., 2013) or the Pan-European
Common Birds Monitoring Scheme (Stephens et al., 2016),
have measured annual trends in species abundances at a
continental scale.

Many data sets that are potentially relevant to producing
the population abundance EBV only exist as time series
for one or more discrete (local) populations. Such data are
useful for the development of biodiversity indicators, like the
aggregated population trends among vertebrate species used
in the Living Planet Index (Loh et al., 2005; Collen et al.,
2009). Even if these data are confined to a few locations, it is
crucial to identify such cases clearly because they might be
useful for building EBV data products.

In the following section, we explain how the EBV
framework can be conceptualized and which dimensions,
attributes and uncertainties are relevant for building EBV
data products. We further highlight ideal versus minimum
requirements of EBV data products and show examples
of projects that have relevant data for building EBV
data products on species distributions and population
abundances.

III. OPERATIONALIZING THE EBV
FRAMEWORK

(1) From raw data to indicators

A fundamental tenet of the EBV framework is that all
EBV data sets lie conceptually between raw data and
indicators (Fig. 1). For a given EBV, raw data can come
from diverse sources, including field observation campaigns
(Dickinson, Zuckerberg & Bonter, 2010; Proença et al., in
press), in situ sensor networks (Porter et al., 2005), remote
sensing (Skidmore et al., 2015; Lausch et al., 2016) and DNA
sequencing (Creer et al., 2016). From those raw data, several
EBV data products can be built (Fig. 1). First, data that use
observation protocols to measure relevant phenomena with
comparable units are identified (‘EBV-useable data sets’).
Multiple data sets can then be combined and harmonized
to a common format with standardized units, having been
quality-checked and error corrected (‘EBV-ready data sets’).
Data gaps in space or time (illustrated as empty fields in
the data cube of Fig. 1) could be filled by applying statistical
techniques for inter- or extrapolation (‘derived and modelled
EBV data’), as well as through targeted future sampling.

Depending on the nature of the raw data, not all of these
processing steps may be needed to build a specific EBV.
Nevertheless, the aggregated, harmonized and modelled
EBV data products should allow derivation of indicators of
the state of biodiversity and estimation of temporal changes in
critical aspects of biodiversity (Butchart et al., 2010; McGeoch
et al., 2010; Pereira et al., 2013; Tittensor et al., 2014).

(2) Dimensions, attributes and uncertainties of
EBVs

Building EBVs with heterogeneous types of data requires
identification and clear definition of the key dimensions,
attributes and uncertainties of EBV-useable data sets,
EBV-ready data sets and derived and modelled EBV data.
Three basic dimensions are of particular importance: space,
time and taxonomy (Fig. 1). Some of this dimensionality can
be represented in more than one axis. For instance, the
spatial dimension can be represented by latitude, longitude,
water depth and altitude. The dimensions and their axes can
form a data cube (Fig. 1). The data cube can be conceptually
useful to encapsulate a multidimensional view of a specific
EBV (Schmeller et al., in press).

The three dimensions (space, time, taxonomy) can be
specified with attributes related to the extent, resolution and
measurement unit along which the dimension is expressed
(Table 1). For instance, the extent may simply be the spatial
and temporal coverage of records across sampling locations,
or how many and which species are documented in the data
cube (Meyer, Weigelt & Kreft, 2016). Resolution might refer
to the spatial and temporal grain size and the taxonomic
resolution of the data (Table 1). For instance, the spatial
resolution of abundance data refers to a discrete point,
a study area, or a volume (e.g. from water samples); the
temporal resolution is associated with the periodicity of
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Table 1. Examples of key dimensions, attributes and uncertainties related to Essential Biodiversity Variables (EBVs) of species
distribution and population abundance

EBV attributes

Dimension Extent Resolution Measurement units Uncertainties

Space Geographical coverage (e.g.
of grid cells, sampling
locations, satellites, etc.)

Spatial resolution (e.g.
grid cell size, polygons,
resolution of satellite
sensors, volume, etc.)

Meters, cubic meters,
kilometers, degrees,
etc.

Precision and accuracy of
coordinates and volumes,
wrongly recorded
coordinates, imprecise
sampling locations

Time Temporal coverage (e.g.
length of time series,
continuous recording,
time period of collection
of records, etc.)

Temporal grain (e.g. date
or time window of
sampling, sampling
frequency)

Hours, days, weeks,
months, years,
decades, etc.

Variation in length of time
series, precision of time of
collection, etc.

Taxonomy Taxonomic coverage (e.g.
how many and which
species are documented)

Species, genus, higher
taxonomic level, etc.

Taxonomic entity for
which species
distribution and
abundance data are
sampled

Identification and observation
uncertainty, ambiguous
scientific names, synonyms,
differences in taxon
concepts, etc.

monitoring; and the taxonomic resolution reflects at which
taxonomic level data are collected, e.g. at the species, genus
or a higher taxonomic level. Measurement units refer to
the quantities that are expressed, such as kilometres, days,
number of individuals, or which taxonomic entities are
chosen and according to which taxon concept. Such attribute
information should ideally be recorded in the metadata
associated with the raw data (discussed further in Section VI).

Each of the three attributes (extent, resolution and unit)
of the three dimensions (space, time and taxonomy) further
comes with uncertainties related to the spatial, temporal and
taxonomic information that makes up the EBV data cube
(Table 1). For instance, imprecise or faulty geo-referencing of
collection localities and an outdated taxonomy or incorrect
specimen identification increases uncertainty by decreasing
the precision and accuracy of geographical and taxonomic
information on species occurrences (Meyer et al., 2016).
Similarly, biodiversity monitoring projects across the world
vary tremendously in observation efforts per site, sampling
frequencies and length of time series, which results in large
temporal uncertainties when analysed jointly (Proença et al.,
in press). For EBVs, uncertainties should be quantified in
as much detail as possible. Identified gaps and biases could
guide national and international efforts for mobilizing new
distribution and population abundance data sets (Meyer et al.,
2015; Amano et al., 2016; Proença et al., in press).

(3) Ideal versus minimum requirements of EBV
data products

Building species distribution and abundance EBVs might
require multiple data products (e.g. for specific taxa, regions,
or time frames). Ideally, an EBV data product should contain
consistent quantitative measurements or estimates across
space and time, allowing a genuine comparison of changes in
species populations over regional to continental extents and
from years to decades. As such, an ideal EBV product would

derive from consistent observations at regular intervals
collected across an optimally designed configuration of
sample locations, allowing conclusions across a range of
spatial and temporal scales. However, such ideal data
sets do not exist, and given the variation in the design of
sampling programs, as well as legislative, social and political
constraints, it is unlikely that an equal monitoring effort
across taxa, ecoregions or jurisdictional boundaries can ever
be achieved (Proença et al., in press; Turak et al., in press a).
It is therefore important to define how ideal requirements for
an EBV data product differ from what is minimally required
(Table 2).

The aim of defining minimum requirements is to provide
guidelines about which data sets are useful in the context
of EBVs. For instance, from field observation campaigns
one would ideally like to have presence–absence or density
estimates from standardized sampling with global coverage at
fine resolution derived from continuous long-term time series
with the highest adequate temporal resolution (Table 2).
However, presence-only or relative abundance estimates
might be the only data available across a large spatial and
temporal extent (Table 2). Hence, the ideal requirements
might only be achievable for a few selected taxa and regions.
If ideal requirements are not met, it might be necessary
to systematically select a subset of the available data. For
example, if data are unavailable across the full geographic
range of a species, it may be preferable to track changes
in biodiversity at smaller geographic extents, e.g. within
particular ecoregions (Turak et al., in press a). More generally,
identifying ideal and minimum requirements (e.g. Table 2)
can serve as a benchmark to evaluate which existing data
sets are appropriate for building EBV data products and
to report on the relative value of each product to assess
biodiversity change. To date, no guidelines exist for how
minimum requirements for EBV data products should be
defined. We therefore suggest that GEO BON and the wider
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Table 2. Ideal versus minimum requirements of Essential Biodiversity Variables (EBVs) data in relation to species distribution and
abundance measurements and their spatial, temporal and taxonomic extent and resolution

EBV dimensions and attributes Ideal requirements Minimum requirements

Species distribution and
abundance measurements

Presence–absence and density of individuals
derived from widely accepted, standardized or
explicit sampling protocols, including
quantification of uncertainty and recording
sampling covariates

Presence-only or (relative, qualitative or
ordinal) density estimates across space
and time based on raw observations or
modelling but only if derived from
widely accepted protocols with
consistency across space/time

Spatial extent Global coverage, with the capacity to provide
high-quality information for global assessments
(e.g. Aichi targets, Sustainable Development
Goals)

Adequate spatial coverage to provide
reliable information on biodiversity
trends for policy decision making (e.g. at
regional or national level)

Spatial resolution Fine-scale estimates of population abundance
across subnational (e.g. a protected area),
national, regional/continental and global
extent

Statistically driven design that allows
combining scattered, high-quality
information at the scale of policy or
management interest (e.g. national
extent)

Temporal extent Continuous long-term time series of abundance
or occupancy over several decades suitable to
assess potential biodiversity change

Repeated measurements at policy-relevant
time intervals to differentiate between
fluctuations and trends, including a
baseline

Temporal resolution Temporal resolution (hours, days, weeks, months,
years) that is adequate to detect population
dynamics for a specific taxon

Reliable species distribution and
abundance estimates for at least two
time slices at the same spatio-temporal
resolution, with relevance to policy
and/or management

Taxonomic extent Maximum possible number of species covering a
wide variety of taxa and life forms, and
providing information on various dimensions of
global change and different ecosystem
functions and services

Selected species representing particular
taxonomic or functional groups,
representative of overall diversity and
environments within spatial extent

Taxonomic resolution Updating compilations of taxonomic names and
associated concepts of all species and their
synonyms

Clearly defined taxonomic units following
known taxonomic authorities

scientific community further develops our recommendations
on minimum requirements of EBV data products.

(4) Examples of projects with EBV-relevant data
products

Due to the vast variability in spatial, temporal and taxonomic
resolution and extent, as well as measurement units
considered by different species distribution and abundance
data sets, there is currently no comprehensive global database
that fulfils all ideal requirements for EBV data products (see
Table 2). As an alternative, different species distribution
and abundance EBV data products could be built based
on consistent global or regional data sets that are available
for particular taxa. Herein, we selected as examples four
projects that have compiled such data sets, covering both
the terrestrial and marine realms (Table 3). We use these
projects to identify how EBV-useable data sets, EBV-ready
data sets and derived and modelled EBV data are produced
from raw observations and how projects implement the data
processing in a workflow environment.

The four projects were (i) eBird, a citizen-science program
collecting massive information on bird species distributions,

abundances and trends; (ii) the TEAM network, wildlife
monitoring surveys of ground-dwelling mammals and birds
using camera traps in tropical forests; (iii) the Living
Planet Index (LPI) data set, a collection of over 18500
time series records of more than 3700 vertebrate species
worldwide; and (iv) the Baltic Sea zooplankton monitoring
(BALTIC) data set, about 60000 abundance measurements
of marine zooplankton collected at 26 stations from the
national plankton monitoring programs in the Baltic region
(Table 3). These projects represent data sets covering a
range of spatial and temporal extents and resolutions,
different measures of species distribution or abundance,
and various statistical modelling and data analysis tools. An
overview is provided in Table 3 and a detailed description of
these projects is provided as online Supporting Information
in Appendix S1 Tables S1–S5.

IV. DATA AND TOOLS FOR BUILDING EBV
DATA PRODUCTS

In principle, a single point measurement of species
distribution or abundance could be incorporated into
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Table 3. Characteristics of four Essential Biodiversity Variable (EBV)-relevant projects, including eBird, the Tropical Ecology
Assessment and Monitoring (TEAM) network, the Living Planet Index (LPI) and national plankton monitoring programs in the
Baltic region (BALTIC)

Characteristics eBird TEAM LPI BALTIC

Spatial extent Global (predominately
Western
Hemisphere)

Tropical forests
worldwide

Global Baltic Sea

Spatial resolution Three million local
sites, model
resolution is 3 km2

23 tropical forest sites
(120–200 km2

resolution)

5598 sites with varying
resolution, not
stratified

26 marine stations in
the Baltic Sea

Temporal extent 2000–present 2007–present 1970–present 2006–present
Temporal resolution Hourly and daily,

weekly after
modelling

7-day time periods,
annual after
modelling

Varies among locations Monthly

Taxonomic extent Birds Ground-dwelling
mammals and birds

Vertebrates Zooplankton

Taxonomic resolution Species Species Species Species
Measure of species

distribution or
abundance

Checklists (counts of
individuals of a
species during a
search)

Presence/absence
derived from
camera-trap records

Population size,
density, catch per
unit effort, or
abundance indices

Number of individuals
per m3

Statistical model or
data analysis

Spatiotemporal
exploratory model
(STEM)

Bayesian dynamic
occupancy model

Generalized Additive
Model (GAM)

Summary statistics

Data after modelling
or analysis

Predicted relative
abundance, trends,
habitat use

Geometric mean of
relative occupancies

Geometric mean of
average change in
abundance or
average annual rates
of changes

Mean abundance

Key references Fink et al. (2010);
Kelling et al. (2015);
Sullivan et al. (2014)

Ahumada et al. (2013);
Beaudrot et al.
(2016); Jansen et al.
(2014)

Collen et al. (2009);
Loh et al. (2005)

http://sharkdata.se/;
Appendix S1

an EBV data product. However, the attributes and
uncertainties of all dimensions of the point measurement
or a set of consistent point measurements should ideally
be expressed in standardized metadata to allow integration
with other data (see Section VI). Additionally, information
about the sampling protocol needs to be accessible. With
data from many diverse sources, a set of algorithms
would be required to convert multiple data points into
common measurement units comparable across space, time
and taxonomy (EBV-ready data sets). However, there
is enormous complexity in harmonizing distribution and
abundance estimates (Chave, 2013; Azaele et al., 2015;
Proença et al., in press) and no effort has yet been undertaken
to combine all available data into one EBV data product at
a global scale. Below, we highlight and summarize different
types of distribution and abundance data, key aspects
to consider when combining multi-source data sets, and
emerging methods and technologies for data collection.

(1) Distribution data

A diverse set of species distribution data types is available.
Here, we summarize them as opportunistic incidence
records, presence–absence data and repeated surveys
(Table 4).

The most common type of observation data is opportunis-
tic incidence records, which are often incidentally reported
or aggregated without a specific sampling protocol. Oppor-
tunistic incidence records generally refer to presence-only
observations (Peterson et al., 2011). Such presence-only
records – e.g. derived from museum or herbarium collec-
tions and unstructured citizen observations – contain vast
amounts of information about where and when organisms
have been observed, but do not report searches that did not
find the species (i.e. absences). Presence-only data are often
subject to bias in space and time, such as uneven sampling
and variation in detectability among species and habitats
(Isaac & Pocock, 2015). These biases can severely impact the
potential usefulness of these data for EBV data products.

A second type of data is presence–absence data such as
those available from checklists or atlas projects (Table 4).
These are often produced through surveys where sites
are visited to record whether they are ‘occupied’ (species
presence) or not (species absence) (MacKenzie et al., 2006).
For these data, the main issue is whether the species has been
reliably detected (true versus false absence). For instance,
occupied sites may be visited and yet no individuals may
be detected (= false absence). Hence, measuring absences is
more time consuming and subject to bias even in rigorously
controlled field assessments (Isaac & Pocock, 2015).
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Table 4. Examples of data types considered candidates for building Essential Biodiversity Variable (EBV) data products on species
distribution and abundance, including their advantages and disadvantages

Type of data Examples Advantages Disadvantages

Species distribution data
Opportunistic incidence

records
Presence-only data from

museum or herbarium
collections

Vast amounts of data available,
easily aggregated across
infrastructures, common
minimum data set

Mostly opportunistically collected, often
without details of survey effort or
method, usually no true absences,
hard to estimate detection
probabilities, wide variation in data
quality

Presence–absence data Checklists, atlas or
camera-trap data

More information content
(absences) than opportunistic
incidence records

Measuring absences is time consuming
and depends on species and habitats

Repeated surveys Monitoring schemes,
repeated atlas projects

Standardized protocols for
sampling, occurrences from
multiple points in time

Often restricted geographically to
Europe and North America,
temporal extent varies among surveys

Abundance data
Opportunistic population

counts
Large-scale citizen science

projects, eBird, aerial
surveys of wide-ranging or
aggregating fauna, some
vegetation surveys

Massive amount of data Not sampled repeatedly at fixed sites,
sometimes sampled without
standardized protocols

Population time series Soay sheep on St. Kilda,
capture histories, North
American Breeding Bird
Survey, UK Butterfly
Monitoring Scheme,
LTER Network, TEAM

Repeated population surveys
with standardized protocols at
fixed sites over multiple years

Available for few species, spatial and
temporal resolution depends on
organism size and life history,
geographic bias towards Europe and
North America, variation in sampling
protocols or their applicability, some
methods are resource-intensive

LTER, Long-Term Ecological Research; TEAM, Tropical Ecology Assessment and Monitoring.

A third source of data comes from repeated surveys
that use a standardized protocol for sampling occurrences
(and sometimes absences) at multiple points in time
(Guillera-Arroita, 2017), for example monitoring schemes
(Proença et al., in press) or repeated atlas projects (Jetz et al.,

2012). This provides occurrence information from multiple
points in time (Table 4), but data are often geographically
restricted to wealthier countries (Proença et al., in press).

Another source for distribution data are expert range
maps which are expert-drawn outlines of species distributions
(Jetz et al., 2012). Examples are distribution maps of birds
provided by BirdLife International (http://datazone.birdlife
.org/home) or those of mammals and amphibians provided
by the International Union for Conservation of Nature and
Natural Resources (IUCN, http://www.iucnredlist.org/).
Expert range maps (Jetz et al., 2012) provide rough estimates
of the outer boundaries of areas within which species are
likely to occur, albeit patchily. However, range maps contain
large spatial and temporal uncertainties which limit their
applicability for measuring changes in species distributions
across time.

(2) Abundance data

For population abundance data, two major data types
can be distinguished: opportunistic population counts and
population time series (Table 4).

Opportunistic population counts are often derived from
initiatives and projects that do not sample repeatedly at
fixed sites (Table 4). Even when collected with standardized
protocols and metadata documentation (regarding survey
effort, sampling method, etc.), such data are difficult to
analyse due to various sources of bias that need to be
accounted for (Kelling et al., 2011; Hochachka & Fink, 2012).

A second type of abundance data is population time series
(Table 4). These can result from repeated and consistent
population surveys from single-species or multi-species
monitoring schemes. Single-species population time series
are often produced in conservation monitoring programs,
e.g. of threatened or invasive species and for populations
of economically important species with commercial or
recreational value. Another valuable type of data is time
series of populations of multiple species that are repeatedly
recorded with standardized protocols at networks of sites.

Examples of population time-series are complete counts
of all individuals (Coulson et al., 2001), capture histories
of marked individuals using capture–recapture methods
(Nichols, 1992), citizen science monitoring schemes such
as the North American Breeding Bird Survey (Sauer
et al., 2013) and the UK Butterfly Monitoring Scheme
(Pollard & Yates, 1993), or projects such as the Long
Term Ecological Research (LTER) Network (www.lternet
.edu), the US National Ecological Observatory Network
(NEON) (http://www.neonscience.org/) and the Tropical
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Ecology Assessment and Monitoring (TEAM) Network
(www.teamnetwork.org). Data availability is biased towards
Europe and North America (McRae, Deinet & Freeman,
2017; Proença et al., in press). Moreover, many of the
large-scale monitoring schemes provide indices of relative
abundance rather than actual population sizes.

(3) Key aspects for building EBV data products

The typical data characteristics outlined above suggest that
EBV data products will usually need to be built from multiple
sources, e.g. mixing data from various opportunistic counts,
repeated surveys or from observations that were sampled
with different protocols or at different spatial and temporal
resolutions. Hence, several aspects must be considered when
building EBV-ready data sets or when producing derived
and modelled EBV data products.

(a) Harmonizing measurement units from different data sources

Measurement units present a multi-layered consideration for
building EBV-ready data sets, particularly those relating to
population abundance. First, abundance is not easily derived
from population density when the surveyed area is not
reported. Second, measurements of abundance are different
for different types of organisms: most vertebrates are usually
counted as individuals, plants and fish are usually measured
as biomass or percentage cover, and aquatic meiofauna in
terms of unit volume. Third, constraints in the way data
are collected produce data sets with a great variety of units
for measuring abundance. Some of these issues could be
overcome by developing a set of well-validated correction
factors, or by combining abundance data from different
sources (e.g. using geometric means) (Buckland et al., 2011).
However, this requires at least that metadata are sufficiently
informative (see Section VI).

(b) Dealing with different spatial scales

Spatial scale, i.e. resolution (grain size) and extent, is a
pervasive issue in ecology (Chave, 2013). Most metrics in
ecology depend on the spatial resolution at which they are
measured, including species abundance and distribution.
For building EBV-ready data sets, it is necessary that the
spatial units of sampling are well defined and that data
can be converted and standardized to consistent spatial
extents and resolutions. Population data sets collected at high
spatial resolutions can provide sensitive metrics of occurrence
and abundance patterns across scales, but high-resolution
information rarely covers broad spatial extents. More often,
EBV data products will need some type of rescaling to
combine observations collected at different spatial scales. The
rescaling procedure can have important consequences for the
consistency of the EBV data product because few ecological
measurements increase in direct proportion with spatial
scale (e.g. probability of occupancy does not scale linearly
with sampled area). There is a growing theoretical and
methodological literature that explores scaling relationships

of distribution and abundance information across resolutions
and extents (e.g. Storch, Marquet & Brown, 2007; Nichols
et al., 2008; Keil, Wilson & Jetz, 2014; Pagel et al., 2014;
Azaele et al., 2015). However, such methods have not
yet been applied in the wider context of building global
data products from multi-source observational data. It
therefore remains unclear whether such approaches can be
generalized and how they can be implemented within EBV
workflows.

(c) Correcting for imperfect detection

Imperfect detection needs to be accounted for when
estimating species distributions and population parameters
(Kéry & Schaub, 2012), and is particularly important in
monitoring applications. A species that is not detected
in a survey might be either not there (true absence) or
undetected (false absence). A range of statistical models and
tools has been developed to correct for imperfect detection
and to address different data types (Guillera-Arroita, 2017).
In general, accounting for imperfect detection requires
information about the observation process (e.g. number
of visits, observers, or detection methods), meaning that
sampling detection covariates and accurate metadata on data
collection and processing is crucial for building EBV-ready
data sets. For example, distance sampling corrects for
detection probability in transect counts as a function of
distance and other covariates (Buckland et al., 2015). If
data structures allow separate estimation of detection and
occupancy parameters, the detection probability can be
estimated statistically (MacKenzie et al., 2006; Royle &
Dorazio, 2009). Hence, methods for imperfect detection
play a crucial role in building EBV data products.

(d ) Interpolation and extrapolation

Original observations from which species distribution and
abundance EBVs can be derived are by necessity sparse
and heterogeneous. Moreover, for most biodiversity data
sets the distribution of search effort across space and time is
irregular, and the data available in a particular area or time of
year may be limited (Kelling et al., 2015). This means that in
addition to aggregating and harmonizing data (i.e. producing
EBV-ready data sets), a significant amount of spatial and
temporal interpolation (e.g. gap filling) and extrapolation
(i.e. prediction beyond sampled space or time) might be
required for producing derived and modelled EBV data
products. One possibility is to apply geostatistical models for
spatial interpolation (e.g. kriging or co-kriging) to estimate
abundance or occupancy in places where sample data is
limited (Meng, Liu & Borders, 2013). Another possibility is
to use SDMs for filling in the geographical or temporal gaps
between locations with data (Elith & Leathwick, 2009; Fink
et al., 2010). Whilst most of these methods are commonly used
and well suited for interpolation, their use for extrapolation
is prone to error and high uncertainty (Elith & Leathwick,
2009).
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(e) Quantifying uncertainties

Uncertainties in EBV data products might derive from
uncertainties in the underlying raw data (e.g. when producing
EBV-ready data sets) or from the applied models (e.g.
when producing derived and modelled EBV data). Data
uncertainties are evident in all key dimensions of species
distribution and abundance EBVs, e.g. due to inaccuracy and
imprecision in raw data collection (Table 1). This can relate
to the accuracy of geographic coordinates, the precision
of time of collection, or spelling errors and orthographic
variants in taxon names. Several tools have already been
applied to quantify uncertainties of geographic coordinates,
sampling dates and taxon names (Guralnick et al., 2006;
Belbin et al., 2013; Lepage, Vaidya & Guralnick, 2014;
Enquist et al., 2016; Meyer et al., 2016). However, assessments
of data uncertainties are often lacking and high-throughput
processing tools for quantifying uncertainties must be
developed for EBV data products.

Data uncertainties can be further exacerbated by
uncertainties in models, e.g. through covariates, model fitting
and parameter estimation (Beale & Lennon, 2012). Different
methods can account for uncertainty from different sources
when deriving indicators. The most common way is to use
the data to generate pseudo-replicates of the parameters
from bootstrapping and then to propagate this distribution
into aggregated indicators (O’Brien et al., 2010). Another is
to use hierarchical models (Gelman et al., 2013) or to employ
Monte Carlo Markov Chains to solve simultaneously for
the parameters and calculate the derived indicators as a
by-product under a Bayesian framework (Royle & Dorazio,
2009; Ahumada et al., 2013). Such methods are important
when building EBV data products.

(4) Emerging methods and technologies for data
collection

Although large amounts of species distribution and
abundance data are already available from traditional
surveys, huge gaps exist in their geographic, temporal and
taxonomic coverage (Fernández et al., 2015; Meyer et al.,
2015, 2016; Amano et al., 2016; Proença et al., in press).
A number of emerging methods and technologies could
potentially help to fill these gaps (Fig. 2).

(a) Citizen science

One opportunistic way to improve data coverage is to
mobilize more data from species monitoring projects
and field observation campaigns (Stephenson et al., 2017;
Proença et al., in press). This includes citizen science projects
(Chandler et al., in press; Dickinson et al., 2010) which
can have several advantages over traditional field surveys
(Fig. 2). Assuring the usefulness of citizen-science data for
EBV data products requires careful design of data-input
and management procedures and recording of associated
information such as sampling effort, species absence and
other data-collection variables (Sullivan et al., 2014; Isaac &

Pocock, 2015; Kelling et al., 2015). Citizen science data may
also require additional cleaning to protect the privacy of
volunteers, and additional metadata documentation to meet
conditions of attribution (Bowser, Wiggins & Stevenson,
2013).

(b) Sensor networks

The in situ collection of species distribution and abundance
information can be accelerated by building networked sensor
instruments (Porter et al., 2005). For instance, networks of
camera traps allow monitoring the spatiotemporal dynamics
of terrestrial birds and mammals in tropical forests (Kays
et al., 2009; Jansen et al., 2014). Such camera-trap networks
have been successfully applied in many terrestrial systems
to measure species occupancy and abundance (Burton et al.,
2015), but only recently have they been deployed in marine
systems (Bicknell et al., 2016). Extending the use of camera
traps within marine, terrestrial and freshwater research
domains can provide valuable new data and insightful
images on species distributions and abundances. Lessons
from terrestrial systems (e.g. imperfect detection, effective
sampling area, multi-species inference) will help to facilitate
a successful transition of such methods to other environments
(Bicknell et al., 2016).

Beyond camera traps, the development of new networked
sensors for automatic species recognition based on sound
detection (Jeliazkov et al., 2016) also offers novel possibilities
to calculate large-scale temporal trends of species distribution
and abundances. Comprehensive tracking of animal
movements from space may further enable the distributed
monitoring of species occurrence (Kays et al., 2015), although
this approach might largely be limited to terrestrial and
marine birds and mammals (Kissling, 2015). Overall,
sensor networks have many advantages over traditional
surveys (Fig. 2). They allow a less costly and much more
comprehensive sampling than field observations.

(c) DNA-based techniques

Recent progress in molecular techniques related to
high-throughput DNA sequencing has disclosed unprece-
dented perspectives for monitoring biodiversity (Creer et al.,
2016). In particular, DNA (meta-)barcoding (i.e. analysis
of one or a few orthologous but variable DNA regions)
or metagenomics (i.e. shotgun sequencing of genomic frag-
ments) are rapid and cost-effective means for taxonomic
identification of hundreds or thousands of organisms in both
terrestrial and aquatic environments (Bourlat et al., 2013;
Segata et al., 2013; Creer et al., 2016; Leray & Knowlton,
2016). These approaches can provide presence/absence data
for macro- and micro-organisms from given locations at a
particular time. However, the DNA-based techniques cur-
rently do not allow reliable estimation of absolute population
abundances because the number of sequence reads is relative
to the sum of the abundances of the other species in a given
sample (Aylagas, Borja & Rodríguez-Ezpeleta, 2014).
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Fig. 2. Emerging methods and technologies for data collection include citizen science, sensor networks, DNA-based techniques
and satellite remote sensing. They have several advantages over traditional in situ field surveys for collecting species distribution and
abundance data. The images are freely available at http://www.clipartpanda.com

Despite advantages, several problems exist with
DNA-based surveys. Common marker sequences (e.g. 18S,
28S and 16S rRNA genes, or the ribosomal internal
transcribed spacer) may not yield sufficient variation for
species identification. Mitochondrial genes (e.g. cytochrome
oxidase I) can identify species, but their use in large-scale and
long-term projects is constrained by tremendous variation
in primer use, amplification steps and sequencing platforms
(Bucklin et al., 2016). Most species also have insufficient
reference sequences in public archives such as GenBank,
and a universal taxonomic system that allows combining the
operational taxonomic units (OTUs) with the traditional
Linnaean names is still lacking (Kõljalg et al., 2016).
Nevertheless, DNA-based techniques have many advantages
for assessing species distributions when compared to in
situ field observations, including identification of cryptic
organisms or incomplete individuals (Fig. 2).

(d ) Satellite remote sensing

Satellite remote sensing can play a crucial role in building
EBV data products, including those on species distributions
and population abundances (Pereira et al., 2013; Skid-
more et al., 2015; Lausch et al., 2016; Pettorelli et al., 2016).
Nevertheless, measuring species distributions and population

abundances from satellite remote sensing has various restric-
tions when identifying individual plants or animals. One key
bottleneck is spatial resolution. For instance, the accurate
identification of individual animals such as large wildlife in
open savannah habitats (Yang et al., 2015) or penguins on
ice (Witharana & Lynch, 2016) requires very high-resolution
satellite images with a spatial resolution preferably below
1 m. However, such global remote-sensing products with
very high resolution are currently only available through
commercial satellite operators, and are costly. As new
spaceborne hyperspectral instruments become available,
species distribution monitoring from space will become
increasingly common and viable, especially for monitoring
plant species that characteristically dominate specific
vegetation types. The planned launches of next-generation
satellites such as EnMAP (http://www.enmap.org/) will
allow scaling up towards global monitoring.

Future research should widen the applications for
mapping species distributions and abundances from both
airborne and spaceborne spatial imagery to a larger number
of animal and plant species from diverse habitats and biomes.
This has several advantages compared to in situ observations,
including a much more consistent and contiguous data
collection at broad spatial scales (Fig. 2). With appropriate
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ground-truthing, this makes satellite remote sensing an ideal
method for understanding biodiversity change at national,
continental and global scales (Schimel, Asner & Moorcroft,
2013).

V. WORKFLOWS FOR BUILDING EBV DATA
PRODUCTS

(1) Importance of workflows for building EBV data
products

The overview in the previous section shows that building
EBV data products requires a substantial level of integra-
tion of data from a large and dispersed number of data
providers, as well as complex preparation and processing
steps. Historically, similar work has involved sets of com-
puter ‘scripts’. Often, these are implemented in a variety
of programming languages and executed via different user
interfaces, with non-automated tasks interspersed through-
out the process. However, for consistently producing and
replicating EBV data products it would be advantageous to
develop and preserve all data access, integration and pro-
cessing steps as an open-source and freely available service in
a workflow-oriented e-infrastructure that supports curation,
sharing and collaboration (Gärdenfors et al., 2014; Enquist
et al., 2016; Hardisty et al., 2016; La Salle et al., 2016; Hugo
et al., 2017). The development of this kind of workflow in such
an environment not only supports the automation of routine
tasks, but also allows formation of analytical protocols that are
robust, transparent and reusable, thereby improving repro-
ducibility of ecological research (Borregaard & Hart, 2016).

Some individual workflows with relevance to abundance
and distribution data have already been developed. Examples
include occurrence retrieval and taxonomic data cleaning
and integration (Mathew et al., 2014) and creating, applying,
projecting and visualizing models for species distributions
and range shifts (De Giovanni et al., 2016). So far, these
individual workflows have not been exploited for EBV
production but they illustrate many of the important steps.
Here, we identify key workflow steps that are needed to build
EBV data products on species distributions and population
abundances from multi-source data sets. We then show how
the previously mentioned projects (i.e. eBird, TEAM, LPI
and BALTIC) relate to these workflow steps. Finally, we
highlight legal and technical aspects that are important for
a workflow-oriented production of EBV data products at a
global scale.

(2) Workflow for building species distribution and
abundance EBV data products

It is possible to identify the most generic key steps of a
workflow system that allows the building of EBV data
products related to species distributions and abundances
(Fig. 3). This includes multiple sequential activities, such as
identification and aggregation of various raw data sources,
data quality control, including duplicate data checks and

taxonomic name matching, and statistical modelling of
integrated data. We identified 11 workflow steps of key
relevance (Fig. 3) in relation to the three major types of EBV
data sets (Fig. 1). We discuss each step briefly below.

(a) EBV-useable data sets

The first series of workflow steps is aimed at gathering
EBV-useable data sets (orange in Fig. 3). This process begins
with identifying and importing the relevant raw data (step 1,
Fig. 3). For in situ species distribution and abundance data,
raw observations are currently mostly derived from natural
history collections, national and international monitoring
programs, or research surveys including those utilizing
citizen science. For some of these, the Global Biodiversity
Information Facility (GBIF) serves as a global aggregation
infrastructure that speeds up the discovery and retrieval
process. For a workflow implementation the available raw
data need to contain not only relevant measurements
on species distributions or abundances (e.g. opportunistic
incidence records, checklists, density estimates), but also
accessible metadata (e.g. in relation to spatial and temporal
extent and resolution, measurement units, sampling strategy,
taxonomy) that facilitate an automatic and standardized
process of data extraction and processing (e.g. Fegraus et al.,
2011).

In a second step, data-sharing agreements and licenses
(if available) must be checked and enforced (step 2, Fig. 3).
Not all data are freely available or useable, and some uses
may be restricted in certain contexts (e.g. commercial use)
or through certain conditions (e.g. requiring citation or
another form of attribution). While including standardized
and machine-readable data licenses would allow this step to
be integrated with step 1, machine-readable licenses are not
currently consistently applied to biodiversity data. Licenses
and other key considerations related to legal interoperability
are discussed below.

In a third step, a basic data consistency and completeness
check must be performed to identify whether the data are
complete and whether they have time formats, measurement
units, spatial information and species identity descriptors that
can be mapped to known standards (step 3, Fig. 3). This is
important because available data sets are often incomplete
or archived in a way that partially or entirely prevents their
reuse (Roche et al., 2015). These first three steps allow to
compile data into EBV-useable data sets for subsequent
processing in a standardized way.

(b) EBV-ready data sets

In the next sequence of workflow steps, harmonized
(EBV-ready) data sets can be produced that are standardized.
They will have undergone rudimentary quality control, with
corrections applied where relevant (green in Fig. 3). This
requires aggregation of data sets from different sources
(step 4, Fig. 3). Combining different types of data (e.g.
opportunistic population counts and population time series,
or population time series from different sources) into the
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Fig. 3. Workflow steps of key relevance for building Essential Biodiversity Variable (EBV) data sets for species distributions and
abundances. The workflow steps are grouped into three major types of EBV data sets (see Fig. 1): EBV-useable data sets (orange),
EBV-ready data sets (green) and derived and modelled EBV data (blue). Each of the EBV data sets should ideally be published with
relevant metadata.

same EBV is not trivial because each data type represents
different sampling schemes, measurement units and spatial
and temporal resolutions. It might therefore be most feasible
to combine different data sets that have the same data type
or those collected for similar purposes.

Another key step is to match taxonomic names (Boyle et al.,
2013), e.g. to relate synonyms to accepted species names if
they derive from different taxonomic treatments (step 5,
Fig. 3). As a minimum, this requires standardized lists or
backbone taxonomies such as those from the Catalogue
of Life, the World Register of Marine Species, or those
directly maintained by specific research communities (e.g.
AmphibiaWeb, ReptileBase, Mammal Species of the World,
iPlant). Nevertheless, such a process can be complicated
(requiring additional tools) because of numerous taxonomic
revisions and inconsistencies over time. Tools such as
Avibase (Lepage et al., 2014), which provides taxon concept
mapping across different bird taxonomic resources, may
be particularly relevant, but are rare outside well-studied
taxonomic groups or geographic regions.

A data quality check and cleaning of data is then
needed (step 6, Fig. 3). This includes identifying and
annotating errors, outliers, wrong identifications and

duplicates which may arise from merging heterogeneous
data sets (Fernández et al., 2015; Meyer et al., 2016). Many
e-Science infrastructures have already developed tools for
cleaning and correcting outliers, errors and duplicates, e.g.
in relation to taxonomy and geo-referencing (Constable
et al., 2010; Kelling et al., 2011; Belbin et al., 2013; Enquist
et al., 2016; La Salle et al., 2016). Of course, not all issues
can be automatically detected or corrected, and community
assistance is needed to help improve the quality and cleaning
of the data (e.g. Constable et al., 2010; Kelling et al., 2011).

The six steps described above are fundamental for
producing EBV-useable and EBV-ready data sets (Fig. 3).

(c) Derived and modelled EBV data products

A further set of workflow steps must be performed if EBVs
are being interpolated or extrapolated (e.g. for gap filling) or
further processed with specific analysis tools (blue in Fig. 3).
This requires checking data coverage and fitness for purpose,
and then creating input files for subsequent modelling (step
7, Fig. 3). This process should allow for the custom selection
of specific taxa or groups of taxa required for a particular
purpose, as well as the ability flexibly to aggregate data
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spatially into grid cells or temporally into time bands of a
specific resolution and extent.

The next workflow step is to choose an appropriate
analytical tool (e.g. a specific statistical model) and, if
required, relevant covariates (step 8, Fig. 3). This depends
on the type of data (e.g. presence-only, presence–absence,
abundance) and the specific purpose (e.g. inter- or
extrapolation, spatial prediction, temporal modelling of
occupancy). The choice can include various species
distribution, occupancy and abundance models (Fink et al.,
2010; Conn et al., 2015; Beaudrot et al., 2016). For some (but
not all) model applications, various detection and habitat
covariates might be needed (Fink et al., 2010; Beaudrot et al.,
2016).

The analytical tools can then be applied (step 9, Fig. 3).
A next step is to calculate and report uncertainty of the
analysis (step 10, Fig. 3). A final step of the workflow is to
generate visualizations that can be provided together with
the underlying data (step 11, Fig. 3). The last two steps might
not always be needed to produce a derived and modelled
EBV data product.

(d ) Publishing EBV data products

A relevant and important aspect of the workflow is to publish
the EBV data products and associated metadata (Fig. 3).
This should include not only the EBV data products but
also the raw data sets used (or links to them), the scripts,
analytical tools and software applied, machine-readable
workflow metadata, and licensing information. In addition,
dashboards with numbers and summary statistics, geospatial
layers, maps and animations for occurrence and abundance
predictions, predictive performance metrics and predictor
importance information for the covariates that were used
in the models, and conditions for reuse should also be
published. Each data product should have a persistent
identifier, such as a Digital Object Identifier (DOI), so
that it is traceable and provides appropriate credit (Hugo
et al., 2017). The content and structure of metadata
should be in a standardized form to allow accessibility
via machine-to-machine interactions, but this must still be
developed for EBV data products (see Section VI).

(3) Application of workflow to empirical examples

To demonstrate the application of the above-described
workflow, we investigated how the various workflow steps
have been implemented by eBird, TEAM, LPI and BALTIC
(Table 3) when applied to building EBV-useable and
EBV-ready data sets (Fig. 4) as well as derived and modelled
EBV data products (Fig. 5). A detailed description of the
workflow steps used in each of the projects is provided in
Appendix S1 Tables S1–S5.

The comparison of the generic workflow steps with those
realized in specific projects (Figs 4 & 5) largely demonstrated
congruency. All workflow steps for derived and modelled
EBV data (Fig. 5) and most steps for building EBV-useable
and EBV-ready data sets were realized by these projects

(Fig. 4). However, some of the generic workflow steps
for building EBV-useable and EBV-ready data sets – e.g.
the matching of taxonomic names (step 5) and data
quality-control procedures (step 6) – were implemented at
different points in the workflow (Fig. 4). Moreover, workflow
steps such as checking data-sharing agreements and licenses
(step 2) or combining data sets from different sources (step 4)
are often done by these projects before the EBV workflow
starts. For instance, data-sharing agreements and licenses
(step 2) were already arranged between data aggregators and
key data providers before step 1. This allowed the raw data
to enter the workflow, e.g. by agreeing to use data for all
non-commercial purposes or by signing specific data-sharing
agreements (Fig. 4).

Of key importance is the publication of data products
(Fig. 3). The eBird data (i.e. EBV-useable and EBV-ready
data sets) can be requested from the eBird portal (http://
ebird.org/ebird/data/download; this requires registration
and login). Additional bar charts, maps, graphs, tables
and visualization tools can also be explored (see http://
ebird.org/ebird/explore). For TEAM, the camera trap data
(i.e. EBV-useable and EBV-ready data sets) are publicly
available (http://www.teamnetwork.org/data/query) and
the modelled occupancy time series for each population
at each site (i.e. derived & modelled EBV data) can be
downloaded (http://wpi.teamnetwork.org/wpi/dashboard).
The LPI provides the individual records for each time
series (i.e. the EBV-useable data set) – excluding about
3000 time series with confidential data – through its data
portal (http://livingplanetindex.org/data_portal) as well as
with the latest publication (McRae et al., 2017) and as part
of the Living Planet Report (http://www.livingplanetindex
.org). All data used in BALTIC were downloaded from the
Swedish LifeWatch portal (Gärdenfors et al., 2014) for marine
monitoring data (EBV-useable data set), while processed
data were stored in the data archives of Environment
Climate Data Sweden (https://ecds.se/ under file identifier:
ccc84507-49c1-43df-9887-97d2232bcb89), including the
harmonized data (EBV-ready data set) and the statistically
analysed data (derived & modelled EBV data). Despite these
publishing efforts by all four projects, their data sets are
published in different ways, and limited consistency and
adoption of data and metadata standards is apparent.

(4) Legal interoperability in EBV workflows

The above-mentioned workflow assumes legal interoperabil-
ity, i.e. a condition where: (i) the legal use conditions can
be clearly and readily determined for each data set; (ii)
the legal use conditions for each data set allow for both
creation and use of combined, or derivative products; and
(iii) users can legally access and use each data set with-
out seeking authorization from data rights holders on a
case-by-case basis (RDA-CODATA Legal Interoperability
Interest Group, 2016). Legal interoperability is therefore an
important requirement for automated workflows and for the
successful development of EBV data products. However,
there are many cases where raw data and data sets might not
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Fig. 4. Workflow steps 1–6 in relation to four projects with Essential Biodiversity Variable (EBV)-relevant data products. The
workflow steps follow Fig. 3. Additional details about these projects are summarized in Table 3 and Appendix S1.

be ‘findable, accessible, interoperable and reusable’ (FAIR
principles; Wilkinson et al., 2016), and this can constrain legal
interoperability.

(a) Constraints on legal interoperability

Key constraints on legal interoperability emerge from
restrictions on data use, modification and sharing. For
instance, legal interoperability is constrained when data sets
are protected by different intellectual property rights (IPRs),
e.g. U.S. copyright law or E.U. Database protection. Other
restrictions on data access and re-use can come from national
security regulations, protection of endangered species, other
types of confidentiality, individual use agreements (e.g.
contracts, licenses and disclaimers) as well as incompatible
data policies of different data sets for the same species. In
many situations, individual researchers and research teams
act as if data were proprietary, and the use of data is not
necessarily designated as open. When data sets are made
accessible only on a case-by-case basis or if they are kept
secret, legal interoperability is not achievable.

Restrictions on data access, use and sharing therefore have
severe consequences for building EBV data products. For
instance, including copyrighted or otherwise restricted raw

data in EBV data products can impede quality control, limit
data aggregation and restrict re-usability. Building EBV data
products that involve proprietary data or sensitive data (e.g.
because of threatened or endangered species) could lead to
situations where different results are produced by different
researchers. Moreover, legal interoperability becomes a key
issue when combining data from multiple sources because
the most restrictive access rights of an included data set will
dictate the access rights of the whole EBV data product.
Existing legal mechanisms therefore need to be promoted
and enforced to ensure open access and legal interoperability
(RDA-CODATA Legal Interoperability Interest Group,
2016).

(b) The need for common-use licenses

One of the most efficient approaches that help to assure legal
interoperability are common-use licenses. The best-known
set of common-use licenses are the Creative Commons (CC)
licenses (Carroll, 2006). Six CC licenses describe different
conditions for re-use, and one designation (CC0) supports
a full waiver of copyright in favour of placing work in
the public domain (Table 5). When combining data from
multiple sources with different CC licenses, the resulting EBV
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Fig. 5. Workflow steps 7–11 in relation to four projects with Essential Biodiversity Variable (EBV)-relevant data products. The
workflow steps follow Fig. 3. Additional details about these projects are summarized in Table 3 and Appendix S1.

data product will incorporate the accumulated restrictions
imposed by each source of data. Since not all licenses are
compatible with each other (Table 5), this can have severe
consequences for aggregating data from multiple sources. For
instance, if one data set licensed with CC0 (i.e. placed in the
public domain) is combined with data licensed as CC BY (i.e.
attribution only) and also combined with data licensed as CC
BY-NC (i.e. with attribution and only for non-commercial
uses), then the resulting EBV data product will contain
the most stringent license type (here, CC BY-NC). This
is problematic because it limits the re-use of the EBV
data product by imposing conditions of attribution and
non-commercial use. Moreover, two of the six CC license
types are incompatible with each other because they do not
permit modification (Table 5).

Hence, the ideal data sets for building EBV products are
those in the public domain, with no restrictions on re-use
and attribution (i.e. no need to specify source and license). If
conditions for re-use are limited to attribution, the only legal
requirement will be to include sufficient metadata to indicate
the data source and the appropriate standardized license, if
one is needed. Two Creative Commons designations (CC0
and CC BY) are therefore recommended for denoting open
data (Table 5), while the remaining five impose restrictions

on re-use. International data-sharing principles, such as those
from the Group on Earth Observations (GEOSS, http://
www.earthobservations.org/dswg.php), endorse CC0 and
CC BY. We recommend following this endorsement when
building EBV data products.

(5) Technical requirements for a workflow-oriented
production

There are multiple technical requirements related to a
workflow-oriented production of global EBV data products.
Interoperable computing infrastructure and promotion of
the development, sharing and use of workflows is needed
(Hardisty et al., 2013; Gärdenfors et al., 2014; Kissling
et al., 2015; Enquist et al., 2016). This includes agreeing
and adopting appropriate structural formats for EBV data
products, for means of data storage and for the execution
and implementation of EBV workflows.

(a) Structural formats of EBV data products

The structure and format of the three types of EBV data
(EBV-useable data sets, EBV-ready data sets and derived and
modelled EBV data) must be further investigated. The format
and specification should facilitate interdisciplinary research
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Table 5. Overview of Creative Commons (CC) licenses and designations (https://creativecommons.org/) and their compatibility
when combining data from multiple sources. Combining data from multiple sources with different licenses will result in the most
stringent license type. Several licenses are compatible with each other, but those that do not permit modification are not compatible
with others. The most flexible is the CC0 designation, which represents a full waiver of copyright in favour of placing work in the
public domain. For the building of Essential Biodiversity Variable data products, CC0 and CC BY are recommended because they
either impose no restrictions on re-use (CC0) or only require attribution (CC BY)

License symbol License name Description Compatible with

No Rights Reserved [CC0] Copyright holder chooses to opt out of
copyright, placing work in the public
domain

Any

Attribution [CC BY] Permits access and use; including
modification; for any purpose; with
attribution

Any

Attribution-ShareAlike [CC
BY-SA]

Permits access and use; including
modification; for any purposes; with
attribution. All derivative works must
use this license

CC0, CC BY

Attribution-NonCommercial
[CC BY-NC]

Permits access and use; including
modification; with attribution. Does
not permit commercial use

CC0, CC BY

Attribution-NonCommercial-
ShareAlike [CC BY-NC-SA]

Permits access and use; including
modification; with attribution. Does
not permit commercial use. All
derivative works must use this license

CC0, CC BY, CC BY-NC

Attribution-NoDerivs [CC
BY-ND]

Permits access and use; for any purpose;
with attribution. Does not permit
modification

None

Attribution-NonCommercial-
NoDerivs [CC BY-NC-ND]

Permits access and use; with attribution.
Does not permit modification; does
not permit commercial use

None

and other uses. It should allow manipulation by a wide range
of software tools and be accessible to a range of end users.
Many established file formats currently exist, including the
Darwin Core Archive (DwC-A) for raw data, the Network
Common Data Format (NetCDF) widely used in Earth
sciences and the Web Map Service (WMS) for geospatial
data (e.g. raster and vector) from the Open Geospatial
Consortium (OGC) (Hugo et al., 2017). GEO BON and the
wider scientific community (e.g. data producers and product
developers) should therefore develop recommendations and
agreements on the most appropriate data models and file
formats for EBV data products.

(b) Data storage

EBV data products must be stored and managed on a
long-term, semi-permanent basis. It is presently unclear
who can take the burden of the storage commitment, and
how this will be funded. The means of investment will
depend on whether the semi-permanent storage of EBV data
products will be done centrally (i.e. in a single repository,
perhaps with duplicated mirror sites) or as a network of
distributed, independent but interoperable storage services.
The GEO BON Secretariat may host a selection of derived
and modelled EBV data, but rely on partners such as
GBIF nodes to host other EBV data products, including
EBV-useable and EBV-ready data sets. Any large-scale

trusted data repository for EBV data products must offer
quality assurance as well as publishing and archival services
so that different Biodiversity Observation Networks (BONs)
and other actors can contribute to, manage and publish
high-quality EBV data products.

(c) Execution and implementation of workflows

Implementing the large-scale execution of workflows for EBV
data production requires appropriate computing infrastruc-
ture. This probably requires workflow management systems
that allow an automated execution of data-intensive scien-
tific workflows on distributed computing infrastructures by
multiple users (Deelman et al., 2009; Liu et al., 2015; Hardisty
et al., 2016). Since infrastructure providers want to be flexible
in terms of which computing environment and technologies
they use, a workflow solution neutral to specific hardware
architectures and execution models is needed. The particular
software for managing these workflows is less critical than
the use of a standard execution-independent mechanism of
workflow representation. An open question is who can take
on the responsibility and cost of implementing specific EBV
workflows. It is probably not the role of data publishers,
and few existing biodiversity research infrastructures are
currently well funded, sustained and able to do this.

Two basic options for the technical production cycle exist.
The first option is a ‘create-on-demand’ process that requires
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ready access to relevant raw data, the workflow and process-
ing capacity at any time of interest. It requires that the source
data for computing EBV data products are compliant with
technical and semantic interoperability standards to allow
on-demand machine translation and mapping of algorithms.
The second option is a periodic and systematic production
of EBV data products (e.g. annually). This reflects that EBV
data products are published/archived as an ever-extending
data archive that can be consulted for a specific place or area
of interest (local, regional, national) at the time of interest.
The differences between create-on-demand and periodic
systematic production are fundamental for how the technical
production processes are defined, how infrastructures are
organized and how access and use permissions for raw data
are handled. A mixture of both approaches may be needed,
e.g. with the GEO BON Data Portal hosting periodic EBV
data products, but on-demand EBV data products being
hosted/offered by GEO BON partners.

VI. METADATA AND DATA-SHARING
STANDARDS

(1) The need for standardized metadata to describe
EBV data products

The development of EBV data products from multi-source
observation data in a workflow-oriented e-infrastructure
depends on standardized metadata to make data findable,
accessible, interoperable and reusable (FAIR principles;
Wilkinson et al., 2016). When a community agrees to such
standardization efforts, the result is consistently presented
information that can be searched using known terms.
Together with controlled vocabularies (i.e. carefully selected
lists of words and phrases) and ontologies (i.e. formal
statements of relationships among concepts represented by
vocabulary terms) this facilitates sharing and discovery of
biodiversity data because it allows consistency for inter-
operability and machine reasoning (Thessen & Patterson,
2011; Michener & Jones, 2012). The ideal metadata for
assessing fitness-for-purpose of potential EBV-useable data
sets (cf . Fig. 3) would provide information about the extent,
resolution, measurement units and uncertainties of spatial,
temporal and taxonomic data dimensions. This would
allow machine-readable discovery and aggregation of large
numbers of candidate data sets (Wilkinson et al., 2016).
For a data set to be considered EBV-ready (see Fig. 3),
its structure needs to be transformed and harmonized
into interoperable formats and units. Furthermore, the
often-complex workflows required to consistently reproduce
derived and modelled EBV data products (see Fig. 3) must
document data provenance, i.e. a record of the data’s origin
and what has been done with it. This includes recording
the modelling and processing steps in a consistent manner.
Below, we provide a brief assessment of the current state
of the art by highlighting current standards and common
formats for sharing biodiversity data.

(2) Current standards for sharing biodiversity data

To date, there is no agreed schema for documenting EBV
data products, but there are many ongoing efforts that can
facilitate the capture of metadata for ecological data (e.g.
Michener et al., 1997; Fegraus et al., 2005; Wieczorek et al.,
2012; Walls et al., 2014). Here, we summarize the most
relevant existing standards related to species distribution and
abundance EBVs (Table 6).

(a) The Darwin Core standard and the Event Core

The Darwin Core (DwC) provides a set of terms that
facilitate the exchange of information about the occurrence of
organisms in nature and the resulting specimens in biological
collections (Wieczorek et al., 2012). As originally conceived,
it is a data and metadata standard for reporting incidental
observations or specimens (summarized under ‘opportunistic
incidence records’ in Section IV.1). To help organize the
169 terms currently in the standard, these are grouped into
several categories or classes. A list of terms and descriptions
is available at http://rs.tdwg.org/dwc/terms/.

Until recently, the DwC has been insufficient to provide
detailed reporting on many aspects of inventories because
no DwC terms existed to report the scope, effort and
completeness of surveys (which is critical information for
assessing potential absence of species). New DwC terms
have begun to close these gaps, including better capture
of quantities found within sampling units. These include
biomass or number of individuals as proxies of abundance,
capture of sample effort reporting and identifiers relating
parent–child relationships between events to represent
hierarchical sampling designs.

In addition, a new organization of the data in the DwC
has recently been proposed that is particularly suitable for
EBV data products. The vast majority of records in DwC
format are ‘occurrence core’ records that have broad use
for reporting opportunistic incidence records in that pro-
file format. However, there is now the possibility to make
the ‘event’ the core, and to place occurrence records as
related to that event (Wieczorek et al., 2014). This enables
data holders to share structured survey data such as popu-
lation time series or presence–absence data (GEO BON,
2016), for instance through GBIF’s Integrated Publish-
ing Toolkit (IPT) (http://www.gbif .org/sites/default/files/
gbif_IPT-sample-data-primer_en.pdf ). However, standard
details about sampling method and effort are not required
in these ‘Event Core’ fields. One possible option is to utilize
extensions for various kinds of inventories, with the caveat
that this may create new challenges with heterogeneous data
and interpretation. In sum, new models of publishing bio-
diversity data extend the DwC approach from its basis in
reporting opportunistic incidence records to more structured
surveys with detailed methods and abundance data.

(b) The Ecological Metadata Language

The Ecological Metadata Language (EML) is an extensive
metadata standard for environmental data sources
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Table 6. A list of the most relevant existing standards related to species distribution and abundance Essential Biodiversity Variables
(EBVs). The relevance of each standard is highlighted for different types of EBV data sets (see EBV workflow in Fig. 3). The first
three standards are more focal to species distribution and abundance data and do not cover derived and modelled data.

Relevance for EBV data sets

Standard Explanation
EBV-useable and

EBV-ready data sets
Derived and

modelled EBV data

Simple Darwin Core
(DwC)

Used to standardize occurrence records (e.g.
opportunistic incidence records) or taxon
checklists

X —

Darwin Core ‘event’ Used to report sampling events and associated
taxa or recovered specimens

X —

Humboldt Core A detailed specification for reporting inventory
process and type, including scope, method and
completeness assessment

X —

Biocollections Ontology
(BCO)

An ontology for representing sampling processes
for biological data, including inventory
processes

X X

Ecological Metadata
Language (EML)

A broad standard and language for reporting
information about data sets coming from
ecological studies

X X

Extensible Observation
Ontology (OBOE) and
Observations and
Measurements (O&M)

OBOE is a broad ontology for reporting
observations and measurements of entities from
evidence, along with context O&M has a
similar remit with application focus for sensor
networks

X X

ISO 19115 A standard for describing spatial and temporal
distribution of digital geographic data

X X

ISO 19157 A standard for reporting geographic data quality
including outputs from processing steps of
geographic input data

X X

PROV A broad family of recommendations to report and
exchange provenance information of digital
data objects

X X

(Michener et al., 1997; Jones et al., 2001; Michener & Jones,
2012). It uses controlled vocabularies (i.e. predefined,
authorized terms) and specifically targets long-term
observation data. Some EML modules describe the data set’s
spatial, temporal and taxonomic coverage, and since these
metadata elements can be accessed at the data discovery
stage, powerful filtering becomes possible (e.g. based on
taxonomic criteria without downloading and inspecting
large data sets). Other EML modules describe methods and
protocols of sampling or processing or contain information
on responsible persons and organizations, software resources,
or access rules. EML metadata and DwC data files can be
bundled into DwC archives, which are self-describing zip
files produced during data publication. These are ultimately
harvested by data aggregators such as GBIF. For this, data
publishers use EML standard fields to describe ownership,
creation and licensing (Robertson et al., 2014).

(c) Other specifications and standards

A number of other specifications and standards can serve
the need for metadata associated with EBV workflows.
Several ontologies have been developed with the aim of
improving data aggregation and integration across the

biodiversity domain, including the Biological Collections
Ontology (BCO) (Walls et al., 2014), the Population and
Community Ontology (PCO) (Walls et al., 2014), the
Environmental Ontology (ENVO) (Buttigieg et al., 2016)
and genomic standards such as the Minimum Information
about any (x) Sequence (MIxS) (Yilmaz et al., 2011). For
in situ biotic inventory processes, the Humboldt Core
provides a vocabulary for describing spatial, temporal,
environmental and taxonomic information (https://mol
.org/humboldtcore/). It includes methodology and effort
reporting and a way to assess how a survey and
inventory was performed and what was collected (e.g.
abundance information and how it was recorded). Other
ontologies for describing observations and measurements
based on digital or material sample evidence include the
Observation and Measurements ontology (O&M) and the
Extensible Observation Ontology (OBOE) (Table 6). For
Earth observation data, the ISO 19115/19157 metadata
standard allows detailed documentation of spatial and
temporal data characteristics, measurement units, legal and
licensing restrictions, data quality and provenance. The ISO
standard is widely used to describe satellite products and
other environmental data, and is a core component of the
Global Earth Observing System of Systems (GEOSS). These
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standard reporting mechanisms may themselves be linked
to general models for provenance such as PROV (Missier,
Belhajjame & Cheney, 2013) to assure both human and
machine-readable information about provenance.

(3) Metadata standards for EBV data products

Practical integration of the above-mentioned standards must
still be achieved in the context of the species distribution
and abundance EBVs. Lack of such integration was
evident when investigating the four example projects (see
Section V). However, aggregators such as GBIF already
provide workflow services that utilize community-developed
standards for expression of occurrence data, e.g. by creating
a centralized resource in DwC format with additional
complementary metadata files in EML (Robertson et al.,
2014). This includes the steps needed to produce EBV-ready
data sets (workflow steps 4–6 in Fig. 3), e.g. to combine
and join data sets of opportunistic incidence records using a
shared taxonomic backbone, and with capacity to perform
geographic quality checks (e.g. Otegui & Guralnick, 2016).
The recent extension of DwC terms and new publishing
mechanisms for an ‘event core’ further extend the DwC
ability to serve multi-species distribution and abundance data
from surveys, monitoring networks and other inventories.

There has been no focus so far on standard metadata
approaches for derived and modelled EBV data products.
ISO 19115/19157 can provide a suitable starting point
for these modelling steps as it has flexible and exten-
sive provenance options for describing (in a structured,
machine-readable format) how a data set was generated (e.g.
algorithms, inputs, outputs and processing steps). Such an
approach allows development of reproducible workflows for
EBV products, especially if standardized identifiers and con-
trolled vocabularies are used (Guralnick et al., 2015). EML
can also provide a detailed description of methods applied
to data, but this is currently done via an unstructured textual
description and not via controlled vocabularies. Semantically
rich approaches such as the BCO and the PCO (see Section
VI.2c) that focus on inputs and outputs as part of workflow
steps could further be useful for the EBV production chain.

In an EBV workflow, uncertainties in terms of data, model
algorithms and parameters must be effectively characterized
and reported. These can come from heterogeneous data
that vary in spatial, temporal and taxonomic dimensions
(Table 1). Such uncertainties can propagate and reverberate
through the EBV production chain. They must be
clearly quantified, described and ultimately controlled. For
traditional geospatial metadata, ISO 19157 explicitly allows
various facets of data uncertainty to be captured. This could
be particularly relevant if metadata documents are to be
linked to modelled and derived EBV data products (see
Fig. 3). When the ISO standard is combined with other
controlled vocabularies (e.g. Yang et al., 2013), detailed
quantitative reports of errors can be constructed in a
machine-readable form. This would allow the propagation
of statistical uncertainty information throughout the EBV
workflow to be recorded.

VII. CONCLUSIONS

(1) In this review, we have provided a first overview
about how to operationalize the EBV concept for species
distribution and abundance data at a global scale. We
discussed (i) important data and tools for building EBV
data products, (ii) the potential for a workflow-oriented
production of EBVs, and (iii) relevant standards for capturing
consistent machine-readable metadata to drive interop-
erability. We also addressed several challenges associated
with building global EBV data products from multi-source
data sets in a workflow-oriented e-infrastructure. Many of
these topics reflect aspects of the ‘Big Data’ challenge in
biodiversity science today.

(2) Building global EBV data products on species
distributions and abundances requires multiple data sets
on presence (and absence) or population size of species to
be combined and harmonized. This can be achieved by
developing workflows that take multiple sequential activities
into account, including identification and aggregation of
various raw data sources, data quality control, taxonomic
name matching and statistical modelling of integrated
data. All data access, integration and processing steps
should be provided as an open and free service in a
workflow-oriented e-infrastructure that supports curation,
sharing and collaboration. We urge funding agencies to
provide financial resources that support the building of EBV
data products, the implementation and development of EBV
workflows, and the coordination and cooperation of research
infrastructures to achieve these goals.

(3) Harmonizing data from opportunistic records and
counts, presence–absence data, repeated surveys and popu-
lation time series will be a major step towards building global
EBV data products of species distribution and abundance.
Combining such heterogeneous, multi-source data sets across
space, time, taxonomy and different sampling methods
requires the development of tools and models for data and
model integration. Key scientific issues include correcting for
imperfect detection, dealing with different spatial resolution
and extents, harmonizing measurement units from different
data sources, applying methods for spatial inter- or extrapo-
lation and developing tools for quantifying and propagating
sources of uncertainty in data and models. We recommend
that innovation in this field is promoted by developing meth-
ods and tools that support harmonization and integration
of disparate raw observations into EBV-useable, EBV-ready
and derived and modelled EBV data products.

(4) The identification of key workflow steps is highly
relevant for building global EBV data products. This helps
to establish analytical protocols that are robust, transparent
and reusable, thereby improving reproducibility of ecological
research. Existing projects, research infrastructures and
citizen science efforts already operationalize many generic
workflow steps. We demonstrate that the identified workflow
steps are applicable to both the terrestrial and aquatic systems
and a broad range of spatial, temporal and taxonomic scales.
Nevertheless, these workflow steps still must be integrated
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or combined for global EBV data production. It is therefore
imperative to develop and implement such analytical
protocols and workflows in a sustained e-infrastructure that
allows global EBV data production.

(5) In line with the FAIR principles (Wilkinson et al., 2016),
it is of vital importance to document metadata with controlled
vocabularies and ontologies and to improve (meta-)data
standards and procedures for building global EBV data
products. Metadata should capture information about the
extent, resolution, measurement units and uncertainties of
the spatial, temporal and taxonomic data dimensions, as well
as conditions for data access and use. They should further
describe the provenance of EBV data products with metadata
on modelling and processing steps. Data standards already
provide means to share and discover data sets and their
properties. Although no specific metadata standards and
information models have yet been developed specifically for
EBVs, recent developments on biodiversity data standards
are particularly suitable for building EBV data products on
species distribution and abundance. Engagement with the
existing bio-geospatial standards communities can catalyse
progress towards an information model that allows semantic
interoperability for integrating multi-source data sets when
building global EBV data products.

(6) Building reliable and representative global EBV
data products requires filling of data gaps in geographic,
temporal and taxonomic coverage. This necessitates a
renewed effort in data mobilization and expanding existing
biodiversity-monitoring initiatives worldwide, including
citizen science projects. In addition, field observations on
species distributions and population abundances need to be
supplemented with data from sensor networks, DNA-based
techniques and satellite remote sensing. New computing
infrastructure as well as storage capacity is needed for
processing, building and storing such EBV data products.
Agreement is also needed on the most effective and efficient
data structures and representation formats.

(7) Building global EBV data products from multiple
sources will benefit from open data or data that are
free from restrictions on use, modification and sharing.
Governmental mechanisms, such as intergovernmental
agreements, as well as national legislation, regulations,
or policies and non-governmental mechanisms such as
‘common-use’ licenses or simple normative (versus legal)
agreements need to be promoted and enforced to ensure
open access and legal interoperability. An important step is
the endorsement of the CC0 designation and CC BY license
when building EBV data products. Any restrictions on re-use
and attribution will affect the processing of multi-source data
sets in a workflow-oriented e-infrastructure and constrain the
usefulness of EBV data products for science and policy advice.
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