16 research outputs found

    Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in Multiple Countries

    Get PDF
    BACKGROUND:Estimates of dengue transmission intensity remain ambiguous. Since the majority of infections are asymptomatic, surveillance systems substantially underestimate true rates of infection. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing both the burden of disease from dengue and the likely impact of interventions. METHODOLOGY/PRINCIPAL FINDINGS:The force of infection (λ) and corresponding basic reproduction numbers (R0) for dengue were estimated from non-serotype (IgG) and serotype-specific (PRNT) age-stratified seroprevalence surveys identified from the literature. The majority of R0 estimates ranged from 1-4. Assuming that two heterologous infections result in complete immunity produced up to two-fold higher estimates of R0 than when tertiary and quaternary infections were included. λ estimated from IgG data were comparable to the sum of serotype-specific forces of infection derived from PRNT data, particularly when inter-serotype interactions were allowed for. CONCLUSIONS/SIGNIFICANCE:Our analysis highlights the highly heterogeneous nature of dengue transmission. How underlying assumptions about serotype interactions and immunity affect the relationship between the force of infection and R0 will have implications for control planning. While PRNT data provides the maximum information, our study shows that even the much cheaper ELISA-based assays would provide comparable baseline estimates of overall transmission intensity which will be an important consideration in resource-constrained settings

    Spatial approach of the production of Aedes aegypti pupae using GIS and remote sensing

    No full text
    International audienceDHF is a permanent challenge for Public Health authorities in Thailand, as epidemics in 1997–1998 and 2001, spread over most of the country. Wide variations of level of incidence over areas mean that to be efficient the control strategy needs the delineation of risk areas. Classical entomological indices are used by public health authorities to launch local vector control activities but their reliability to identify areas with higher incidence and to reduce it, is limited. In the frame of a WHO-TDR program to develop new entomological indices based on pupae counts, an exhaustive survey of potential breeding sites has been untertaken in areas with different types of urbanization in Thailand. A GIS database has been set up and includes the GPS location of every surveyed houses. The characterization of the most productive breeding sites in terms of pupae, the density of human population and socio economic indicators, such as the field description of the type of dwellings were additional layers of information. Most productive BS were similar in the different areas. Spatial patterns in the distribution of pupae allows to identify areas where targeted vector control should be easier and more efficient. This method, combining field survey for the characterization of productive breeding sites and GIS technology to delineate areas with a specific type of urbanization, will help to identify similar environments likely to evolve simultaneously in response to the emergence of epidemic phenomena

    Modelling the effect of temperature on transmission of dengue

    No full text
    The main entomological parameters involved in the rate of dengue virus transmission include the longevity of female mosquitoes, the time interval between bites and the extrinsic incubation period of the virus. Field and laboratory data provide estimates for these parameters, but their interactions with other factors (e.g. host population density and environmental parameters) make their integration into a transmission model quite complex. To estimate the impact of these parameters on transmission, we developed a model of virus transmission by a vector population which predicts the number of potentially infective bites under a range of temperatures and entomological parameters, including the daily survival rate of females, the interval between bites and the extrinsic incubation period. Results show that in a stable population, an increase in mosquito longevity disproportionately enhances the number of potential transmissions (e.g. by as much as five times when the survival rate rises from 0.80 to 0.95). Halving the length of the biting interval with a 10°C rise in temperature increases the transmission rate by at least 2.4 times. Accordingly, the model can predict changes in dengue transmission associated with short-term variation in seasonal temperature and also with potentially long-lasting increases in global temperatures

    Modelling the effect of temperature on transmission of dengue

    No full text
    The main entomological parameters involved in the rate of dengue virus transmission include the longevity of female mosquitoes, the time interval between bites and the extrinsic incubation period of the virus. Field and laboratory data provide estimates for these parameters, but their interactions with other factors (e.g. host population density and environmental parameters) make their integration into a transmission model quite complex. To estimate the impact of these parameters on transmission, we developed a model of virus transmission by a vector population which predicts the number of potentially infective bites under a range of temperatures and entomological parameters, including the daily survival rate of females, the interval between bites and the extrinsic incubation period. Results show that in a stable population, an increase in mosquito longevity disproportionately enhances the number of potential transmissions (e.g. by as much as five times when the survival rate rises from 0.80 to 0.95). Halving the length of the biting interval with a 10-degrees C rise in temperature increases the transmission rate by at least 2.4 times. Accordingly, the model can predict changes in dengue transmission associated with short-term variation in seasonal temperature and also with potentially long-lasting increases in global temperatures

    Environmental factors and incidence of dengue fever and dengue haemorrhagic fever in an urban area, Southern Thailand

    No full text
    Using the enumeration district (ED) block level this study looked at the incidence of dengue fever and dengue haemorrhagic fever (DF/DHF) within the Songkhla municipality in Thailand. Each of the 146 blocks in this area were considered as study units and surveyed for their environmental characteristics. A total of 287 cases of DH/DHF occurring in the year 1998 were selected for this study and the location of their homes mapped. Clustering analysis showed point clustering of the homes (P<0·0001) which was probably due to high density habitation, without any actual prevalence of case clustering. There was no evidence of clustering of the ED blocks with an incidence of DF/DHF (P=0·32). DF/DHF incidence for each block was strongly associated with the percentages of shop-houses, brick-made houses and houses with poor garbage disposal (all P<0·01). DF/DHF control should be emphasized for the areas which have a predominance of these housing types
    corecore