334 research outputs found

    The SNEWS 2.0 alert software for the coincident detection of neutrinos from core-collapse supernovae

    Get PDF
    The neutrino signal from the next galactic core-collapse supernova will provide an invaluable early warning of the explosion. By combining the burst trigger from several neutrino detectors, the location of the explosion can be triangulated minutes to hours before the optical emission becomes visible, while also reducing the rate of false-positive triggers. To enable multi-messenger follow-up of nearby supernovae, the SuperNova Early Warning System 2.0 (SNEWS 2.0) will produce a combined alert using a global network of neutrino detectors. This paper describes the trigger publishing and alert formation framework of the SNEWS 2.0 network. The framework is built on the HOPSKOTCH publish-subscribe system to easily incorporate new detectors into the network, and it implements a coincidence system to form alerts and estimate a false-positive rate for the combined triggers. The paper outlines the structure of the SNEWS 2.0 software and the initial testing of coincident signals

    A Review of NEST Models, and Their Application to Improvement of Particle Identification in Liquid Xenon Experiments

    Full text link
    Liquid xenon is a leader in rare-event physics searches. Accurate modeling of charge and light production is key for simulating signals and backgrounds in this medium. The signal- and background-production models in the Noble Element Simulation Technique (NEST) are presented. NEST is a simulation toolkit based on experimental data, fit using simple, empirical formulae for the average charge and light yields and their variations. NEST also simulates the final scintillation pulses and exhibits the correct energy resolution as a function of the particle type, the energy, and the electric fields. After vetting of NEST against raw data, with several specific examples pulled from XENON, ZEPLIN, LUX/LZ, and PandaX, we interpolate and extrapolate its models to draw new conclusions on the properties of future detectors (e.g., XLZD's), in terms of the best possible discrimination of electron(ic) recoil backgrounds from a potential nuclear recoil signal, especially WIMP dark matter. We discover that the oft-quoted value of 99.5% discrimination is overly conservative, demonstrating that another order of magnitude improvement (99.95% discrimination) can be achieved with a high photon detection efficiency (g1 ~ 15-20%) at reasonably achievable drift fields of 200-350 V/cm.Comment: 24 Pages, 6 Tables, 15 Figures, and 15 Equation

    MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    Get PDF
    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented

    The SNEWS 2.0 Alert Software for the Coincident Detection of Neutrinos from Core-Collapse Supernovae

    Get PDF
    The neutrino signal from the next galactic core-collapse supernova will provide an invaluable early warning of the explosion. By combining the burst trigger from several neutrino detectors, the location of the explosion can be triangulated minutes to hours before the optical emission becomes visible, while also reducing the rate of false-positive triggers. To enable multi-messenger follow-up of nearby supernovae, the SuperNova Early Warning System 2.0 (SNEWS 2.0) will produce a combined alert using a global network of neutrino detectors. This paper describes the trigger publishing and alert formation framework of the SNEWS 2.0 network. The framework is built on the HOPSKOTCH publish-subscribe system to easily incorporate new detectors into the network, and it implements a coincidence system to form alerts and estimate a false-positive rate for the combined triggers. The paper outlines the structure of the SNEWS 2.0 software and the initial testing of coincident signals

    Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Get PDF
    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2–2.3 π mm-rad horizontally and 0.6–1.0 π mm-rad vertically, a horizontal dispersion of 90–190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE

    Crime as risk taking

    Get PDF
    Engagement in criminal activity may be viewed as risk-taking behaviour as it has both benefits and drawbacks that are probabilistic. In two studies, we examined how individuals' risk perceptions can inform our understanding of their intentions to engage in criminal activity. Study 1 measured youths' perceptions of the value and probability of the benefits and drawbacks of engaging in three common crimes (i.e. shoplifting, forgery, and buying illegal drugs), and examined how well these perceptions predicted youths' forecasted engagement in these crimes, controlling for their past engagement. We found that intentions to engage in criminal activity were best predicted by the perceived value of the benefits that may be obtained, irrespective of their probabilities or the drawbacks that may also be incurred. Study 2 specified the benefit and drawback that youth thought about and examined another crime (i.e. drinking and driving). The findings of Study 1 were replicated under these conditions. The present research supports a limited rationality perspective on criminal intentions, and can have implications for crime prevention/intervention strategies

    MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors

    Get PDF
    Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798

    Independent measurement of the total active B8 solar neutrino flux using an array of He3 proportional counters at the Sudbury Neutrino Observatory

    Get PDF
    The Sudbury Neutrino Observatory (SNO) used an array of 3He proportional counters to measure the rate of neutral-current interactions in heavy water and precisely determined the total active (νx) 8B solar neutrino flux. This technique is independent of previous methods employed by SNO. The total flux is found to be 5.54-0.31+0.33(stat)-0.34+0.36(syst)×106  cm-2 s-1, in agreement with previous measurements and standard solar models. A global analysis of solar and reactor neutrino results yields Δm2=7.59-0.21+0.19×10-5  eV2 and θ=34.4-1.2+1.3 degrees. The uncertainty on the mixing angle has been reduced from SNO’s previous results
    • …
    corecore