83 research outputs found

    Optimizing huddle engagement through leadership and problem-solving within primary care: A study protocol for a cluster randomized trial

    Get PDF
    Abstract Background Team-based care has been identified as a key component in transforming primary care. An important factor in implementing team-based care is the requirement for teams to have daily huddles. During huddles, the care team, comprising physicians, nurses, and administrative staff, come together to discuss their daily schedules, track problems, and develop countermeasures to fix these problems. However, the impact of these huddles on staff burnout over time and patient outcomes are not clear. Further, there are challenges to implementing huddles in fast-paced primary care clinics. We will test whether the impact of a behavioral intervention of leadership training and problem-solving during the daily huddling process will result in higher consistent huddling in the intervention arm and result in higher team morale, reduced burnout, and improved patient outcomes. Methods/design We will conduct a care-team-level cluster randomized trial within primary care practices in two Midwestern states. The intervention will comprise a 1-day training retreat for leaders of primary care teams, biweekly sessions between huddle optimization coaches and members of the primary care teams, as well as coaching site visits at 30 and 100 days post intervention. This behavioral intervention will be compared to standard care, in which care teams have huddles without any support or training. Surveys of primary care team members will be administered at baseline (prior to training), 100 days (for the intervention arm only), and 180 days to assess team dynamics. The primary outcome of this trial will be team morale. Secondary outcomes will assess the impact of this intervention on clinician burnout, patient satisfaction, and quality of care. Discussion This trial will provide evidence on the impact of a behavioral intervention to implement huddles as a key component of team-based care models. Knowledge gained from this trial will be critical to broader deployment and successful implementation of team-based care models. Trial registration Clinicaltrials.gov , NCT03062670 . Registered on 23 February 2017

    Electronic Chopper for Spectral Lamps

    No full text

    Pyrophosphate-condensing activity linked to nucleic acid synthesis.

    No full text
    In some preparations of DNA dependent RNA polymerase a new enzymatic activity has been found which catalyzes the condensation of two pyrophosphate molecules, liberated in the process of RNA synthesis, to one molecule of orthophosphate and one molecule of Mg (or Mn) - chelate complex with trimetaphosphate. This activity can also cooperate with DNA-polymerase, on condition that both enzymes originate from the same cells. These results point to two general conclusions. First, energy is conserved in the overall process of nucleic acid synthesis and turnover, so that the process does not require an energy influx from the cell's general resources. Second, the synthesis of nucleic acids is catalyzed by a complex enzyme system which contains at least two separate enzymes, one responsible for nucleic acid polymerization and the other for energy conservation via pyrophosphate condensation

    A possible mechanism responsible for the correction of transcription errors.

    No full text
    Nucleoside triphosphate phosphohydrolase (NTPase) activity was found in a preparation of E. Coli RNA polymerase. This enzymatic activity is capable of hydrolysing all four ribonucleoside triphosphates to the nucleoside diphosphates. However, during in vitro RNA synthesis directed by poly(dC) or poly(dT), only the non-complementary nucleoside triphosphate of the same heterocyclic class was hydrolysed. No incorporation of the non-complementary precursor into RNA could be detected in these experiments. When another RNA polymerase preparation, devoid of NTPase activity, was employed, there was no hydrolysis of any nucleoside triphosphate and significant incorporation of non-complemtary precursor into RNA was observed. These observations lead us to the conclusion that NTPase, acting in conjunction with RNA polymerase, has the function of correcting errors in transcription

    Chlorophyll fluorescence emission spectrum inside a leaf

    Get PDF
    Chlorophyll a fluorescence can be used as an early stress indicator. Fluorescence is also connected to photosynthesis so it can be proposed for global monitoring of vegetation status from a satellite platform. Nevertheless, the correct interpretation of fluorescence requires accurate physical models. The spectral shape of the leaf fluorescence free of any re-absorption effect plays a key role in the models and is difficult to measure. We present a vegetation fluorescence emission spectrum free of re-absorption based on a combination of measurements and modelling. The suggested spectrum takes into account the photosystem I and II spectra and their relative contribution to fluorescence. This emission spectrum is applicable to describe vegetation fluorescence in biospectroscopy and remote sensing
    corecore